MODELING GENDER DEVELOPMENT INDEX IN SOUTHEAST SULAWESI PROVINCE USING SEMIPARAMETRIC KERNEL REGRESSION
Abstract
The issue of gender equality in Southeast Sulawesi still needs further attention, as indicated by the uneven value of the Gender Development Index (GDI) in each district/city in the region. Therefore, an in-depth analysis is needed to identify factors that affect the GDI. One method that can be used is semiparametric regression with the Nadaraya-Watson estimator, which allows modeling the relationship between variables with more flexibility. This study aims to build a semiparametric regression model to identify factors that contribute to HDI in Southeast Sulawesi Province. The results of the analysis showed that the optimal bandwidth values obtained were h1= 1.57, h2=0.49, h3=2.50 and h4=4.61. The resulting model has an R2 and MSE values of 99.8% and 0.14% respectively, indicating that the model has high accuracy in explaining the overall variation in GDI.
Downloads
References
A. Indrasetianingsih, F. Fitriani, and P. J. Kusuma, “KLASIFIKASI INDEKS PEMBANGUNAN GENDER DI INDONESIA TAHUN 2020 MENGGUNAKAN SUPERVISED MACHINE LEARNING ALGORITHMS,” Inferensi, vol. 4, no. 2, p. 129, 2021, doi: https://doi.org/10.12962/j27213862.v4i2.10940.
I. E. Lestari, S. N. Sarfiah, and G. Jalunggono, “ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI INDEKS PEMBANGUNAN GENDER DI PROVINSI JAWA TENGAH TAHUN 2010-2019,” Dinamic, vol. 1, pp. 182–194, 2021.
I. Elisa, “FAKTOR-FAKTOR YANG MEMPENGARUHI INDEKS PEMBANGUNAN GENDER (IPG) PROVINSI SUMATERA BARAT MENGGUNAKAN ANALISIS REGRESI DATA PANEL,” J. Math. UNP, vol. 7, no. 2, p. 8, 2022, doi: https://doi.org/10.24036/unpjomath.v7i2.12666.
W. Cahyadi and C. C. Cen, “THE EFFECT OF INCOME DISTRIBUTION, HUMAN DEVELOPMENT INDEX, AND ECONOMIC GROWTH ON POVERTY,” Int. J. Econ. Bus. Appl., vol. 1, no. 2, pp. 187–194, 2020, doi: https://doi.org/10.9790/487X-2207011520.
Randall, E. (1999). NONPARAMETRIC REGRESSION AND SPLINE SMOOTHING, SECOND EDITION. United States of America, New York, Basel: Mrcell Dekker.
Ruppert, D., Wand, M.P., & Carroll, R.J. (2003). SEMIPARAMETRIC REGRESSION. New York: Cambridge University Press.
Laome, L. 2010. MODEL REGRESI SEMIPARAMETRIK SPLINE UNTUK DATA LONGITUDINAL PADA KASUS KADAR CD4 PENDERITA HIV, Paradigma 13(2), 186-194.
M. Berger and M. Schmid, “SEMIPARAMETRIC REGRESSION FOR DISCRETE TIME-TO-EVENT DATA,” Stat. Modelling, vol. 18, no. 3–4, pp. 322–345, 2018, doi: https://doi.org/10.1177/1471082X17748084.
J. Luts, T. Broderick, and M. P. Wand, “REAL-TIME SEMIPARAMETRIC REGRESSION,” J. Comput. Graph. Stat., vol. 23, no. 3, pp. 589–615, 2014, doi: https://doi.org/10.1080/10618600.2013.810150.
D. Conn and G. Li, “AN ORACLE PROPERTY OF THE NADARAYA–WATSON KERNEL ESTIMATOR FOR HIGH-DIMENSIONAL NONPARAMETRIC REGRESSION,” Scand. J. Stat., vol. 46, no. 3, pp. 735–764, 2019, doi: https://doi.org/10.1111/sjos.12370.
B. Funke and M. Hirukawa, “BIAS CORRECTION FOR LOCAL LINEAR REGRESSION ESTIMATION USING ASYMMETRIC KERNELS VIA THE SKEWING METHOD,” Econom. Stat., vol. 20, no. xxxx, pp. 109–130, 2021, doi: https://doi.org/10.1016/j.ecosta.2020.01.004.
H. N, S. S F, N. K, and S. E, “THE NONPARAMETRIC KERNEL METHOD USING NADARAYA-WATSON, PRIESTLEY-CHAO AND GASSER-MULLER ESTIMATORS FOR THE ESTIMATION OF THE RAINFALL DATA IN LAMPUNG,” Int. J. Math. Trends Technol., vol. 68, no. 8, pp. 12–20, 2022, doi: https://doi.org/10.14445/22315373/ijmtt-v68i8p502.
Nadaraya, E.A. (1964). ON ESTIMATING REGRESSION. THEORY OF PROBABILITY AND ITS APPLICATIONS, Vol.9(1), 141-142.
BPS. 2022. INDEKS PEMBANGUNAN GENDER. https://sultra.bps.go.id, [diakses Mei 2024].
W. Wibowo, S. Haryatmi, and I. N. Budiantara, “KAJIAN METODE ESTIMASI PARAMETER DALAM REGRESI SEMIPARAMETRIK SPLINE,” Berk. MIPA, vol. 23, no. 1, pp. 102–110, 2013.
T. Hastie and R. Tibsgirani, “ADDITIVE MODELS GENERALIZED,” Stat. Sci., vol. 1, no. 3, pp. 297–310, 1986.
A. T. Ampa, I. Nyoman Budiantara, and I. Zain, “KERNEL MULTIVARIABLE SEMIPARAMETRIC REGRESSION MODEL IN ESTIMATING THE LEVEL OF OPEN UNEMPTION IN EAST JAVA PROVINCE,” J. Phys. Conf. Ser., vol. 1899, no. 1, 2021, doi: https://doi.org/10.1088/1742-6596/1899/1/012127.
B. Both and Z. Szánthó, “EXPERIMENTAL AND NUMERICAL INVESTIGATION OF AN OFFSET JET USING TANGENTIAL AIR DISTRIBUTION SYSTEM,” Period. Polytech. Mech. Eng., vol. 60, no. 3, pp. 129–136, 2016, doi: https://doi.org/10.3311/PPme.8017.
S. F. Muazarah, “REGRESI NONPARAMETRIK KERNEL DENGAN PENDEKATAN FUNGSI GAUSSIAN UNTUK MEMODELKAN INFLASI DI INDONESIA,” 2023.
A. T. Ampa, I. N. Budiantara, and I. Zain, “MODELING THE LEVEL OF DRINKING WATER CLARITY IN SURABAYA CITY DRINKING WATER REGIONAL COMPANY USING COMBINED ESTIMATION OF MULTIVARIABLE FOURIER SERIES AND KERNEL,” Sustain., vol. 14, p. 13663, 2022, doi: https://doi.org/10.3390/su142013663.
D. N. Gujarati, BASIC ECONOMITRICS. 2003.
I. Gani and S. Amalia, “ALAT ANALISIS DATA,” CV Andi Offset, p. 306, 2014.
Copyright (c) 2025 Andi Tenri Ampa, Lilis Laome, Muhammad Ridwan, Baharuddin Baharuddin, Makkulau Makkulau

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.