JOINT DISTRIBUTION AND PROBABILITY DENSITY OF CLIMATE FACTORS IN KALIMANTAN USING NESTED COPULAS

Keywords: Climate Factors, Copula, ENSO, IOD, Kalimantan, Multivariate Distribution

Abstract

In this study, we investigate the joint distribution of local and global climate factors in Kalimantan, Indonesia, using fully and partially nested copula models. The analysis focuses on capturing the dependencies between local factors (precipitation and the number of dry days) and global indices (ENSO and IOD). The methodology involves estimating the marginal distributions of each variable using goodness-of-fit tests, and then modeling the dependence structure between variables with a range of copulas. We used both one-parameter copulas, including Gaussian, Clayton, Gumbel, Joe, and Frank, as well as two-parameter copulas, such as BB1, BB7, and BB8, with rotations of 90°, 180°, and 270° applied to account for negative dependencies. Nested copula structures were employed to model multivariate dependencies, with fully nested and partially nested approaches used to capture interactions between all four variables. The results show that global climate indices, particularly ENSO and IOD, have a more substantial influence during the dry season, impacting drought conditions in Kalimantan. The copula method offers a flexible and efficient way to construct multivariate joint distributions, better representing complex climate relationships than traditional models. Future work could extend this approach to include additional climate variables and use real-time data for forest fire risk prediction.

Downloads

Download data is not yet available.

References

S. Nurdiati et al., “THE IMPACT OF EL NIÑO SOUTHERN OSCILLATION AND INDIAN OCEAN DIPOLE ON THE BURNED AREA IN INDONESIA,” Terr. Atmos. Ocean. Sci., vol. 33, no. 15, 2022, doi: 10.1007/S44195-022-00016-0.

X. Pan, M. Chin, C. M. Ichoku, and R. D. Field, “CONNECTING INDONESIAN FIRES AND DROUGHT WITH THE TYPE OF EL NIÑO AND PHASE OF THE INDIAN OCEAN DIPOLE DURING 1979–2016,” J. Geophys. Res. Atmos., vol. 123, no. 15, pp. 7974–7988, 2018, doi: 10.1029/2018JD028402.

S. Nurdiati, F. Bukhari, M. T. Julianto, M. K. Najib, and N. Nazria, “HETEROGENEOUS CORRELATION MAP BETWEEN ESTIMATED ENSO AND IOD FROM ERA5 AND HOTSPOT IN INDONESIA,” Jambura Geosci. Rev., vol. 3, no. 2, pp. 65–72, 2021, doi: 10.34312/jgeosrev.v3i2.10443.

A. M. Hidayat, U. Efendi, L. Agustina, and P. A. Winarso, “KORELASI INDEKS NINO 3.4 DAN SOUTHERN OSCILLATION INDEX (SOI) DENGAN VARIASI CURAH HUJAN DI SEMARANG,” J. Sains Teknol. Modif. Cuaca, vol. 19, no. 2, p. 75, 2018, doi: 10.29122/jstmc.v19i2.3143.

I. Narulita, R. Rahayu, E. Kusratmoko, S. Supriatna, and M. Djuwansah, “ANCAMAN KEKERINGAN METEOROLOGIS DI PULAU KECIL TROPIS AKIBAT PENGARUH EL-NINO DAN INDIAN OCEAN DIPOLE (IOD) POSITIF, STUDI KASUS: PULAU BINTAN,” J. Lingkung. dan Bencana Geol., vol. 10, no. 3, p. 127, 2020, doi: 10.34126/jlbg.v10i3.252.

G. Y. I. Ryadi, A. Sukmono, and B. Sasmito, “PENGARUH FENOMENA EL-NINO DAN LA-NINA PADA PERSEBARAN CURAH HUJAN DAN TINGKAT KEKERINGAN LAHAN DI PULAU BALI,” J. Geod. Undip, vol. 8, no. 4, pp. 41–49, 2019.

M. K. Najib, S. Nurdiati, and A. Sopaheluwakan, “COPULA-BASED JOINT DISTRIBUTION ANALYSIS OF THE ENSO EFFECT ON THE DROUGHT INDICATORS OVER BORNEO FIRE-PRONE AREAS,” Model. Earth Syst. Environ., vol. 8, no. 2, pp. 2817–2826, 2022, doi: 10.1007/s40808-021-01267-5.

P. R. Dewick and S. Liu, “COPULA MODELLING TO ANALYSE FINANCIAL DATA,” J. Risk Financ. Manag., vol. 15, no. 3, 2022, doi: 10.3390/jrfm15030104.

I. Ismail, F. N. N. Abd Mutalip, and K. Jacob, “A COMPREHENSIVE REVIEW ON THE DEVELOPMENT OF COPULAS IN FINANCIAL FIELD,” J. Intell. Fuzzy Syst., vol. 45, no. 4, pp. 6047–6062, 2023, doi: 10.3233/JIFS-223481.

B. Rašiová and P. Árendáš, “COPULA APPROACH TO MARKET VOLATILITY AND TECHNOLOGY STOCKS DEPENDENCE,” Financ. Res. Lett., vol. 52, 2023, doi: 10.1016/j.frl.2022.103553.

V. Gumus, Y. Avsaroglu, O. Simsek, and A. Basak, “EVALUATING THE DURATION, SEVERITY, AND PEAK OF HYDROLOGICAL DROUGHT USING COPULA,” Theor. Appl. Climatol., vol. 152, no. 3–4, pp. 1159–1174, 2023, doi: 10.1007/s00704-023-04445-w.

G. Geenens, “COPULA MODELING FOR DISCRETE RANDOM VECTORS,” Depend. Model., vol. 8, no. 1, pp. 417–440, 2020, doi: 10.1515/demo-2020-0022.

G. Geenens, “(Re-)Reading Sklar (1959)—A PERSONAL VIEW ON SKLAR’S THEOREM,” Mathematics, vol. 12, no. 3, 2024, doi: 10.3390/math12030380.

M. K. Najib, S. Nurdiati, and A. Sopaheluwakan, “QUANTIFYING THE JOINT DISTRIBUTION OF DROUGHT INDICATORS IN BORNEO FIRE-PRONE AREA,” IOP Conf. Ser. Earth Environ. Sci., vol. 880, no. 1, 2021, doi: 10.1088/1755-1315/880/1/012002.

X. Wei, H. Zhang, V. P. Singh, C. Dang, S. Shao, and Y. Wu, “COINCIDENCE PROBABILITY OF STREAMFLOW IN WATER RESOURCES AREA, WATER RECEIVING AREA AND IMPACTED AREA: IMPLICATIONS FOR WATER SUPPLY RISK AND POTENTIAL IMPACT OF WATER TRANSFER,” Hydrol. Res., vol. 51, no. 5, pp. 1120–1135, 2020, doi: 10.2166/nh.2020.106.

M. K. Najib, S. Nurdiati, and A. Sopaheluwakan, “MULTIVARIATE FIRE RISK MODELS USING COPULA REGRESSION IN KALIMANTAN, INDONESIA,” Nat. Hazards, vol. 113, no. 2, pp. 1263–1283, 2022, doi: 10.1007/s11069-022-05346-3.

Z. Li, Q. Shao, Q. Tian, and L. Zhang, “COPULA-BASED DROUGHT SEVERITY-AREA-FREQUENCY CURVE AND ITS UNCERTAINTY, A CASE STUDY OF HEIHE RIVER BASIN, CHINA,” Hydrol. Res., vol. 51, no. 5, pp. 867–881, 2020, doi: 10.2166/nh.2020.173.

A. Wiboonpongse, J. Liu, S. Sriboonchitta, and T. Denoeux, “MODELING DEPENDENCE BETWEEN ERROR COMPONENTS OF THE STOCHASTIC FRONTIER MODEL USING COPULA: APPLICATION TO INTERCROP COFFEE PRODUCTION IN NORTHERN THAILAND,” Int. J. Approx. Reason., vol. 65, pp. 34–44, 2015, doi: 10.1016/j.ijar.2015.04.001.

S. Sriboonchitta, J. Liu, A. Wiboonpongse, and T. Denoeux, “A DOUBLE-COPULA STOCHASTIC FRONTIER MODEL WITH DEPENDENT ERROR COMPONENTS AND CORRECTION FOR SAMPLE SELECTION,” Int. J. Approx. Reason., vol. 80, pp. 174–184, 2017, doi: 10.1016/j.ijar.2016.08.006.

J. Liu, D. Sirikanchanarak, S. Sriboonchitta, and J. Xie, “ANALYSIS OF HOUSEHOLD CONSUMPTION BEHAVIOR AND INDEBTED SELF-SELECTION EFFECTS: CASE STUDY OF THAILAND,” Math. Probl. Eng., 2018, doi: 10.1155/2018/5486185.

Published
2025-04-01
How to Cite
[1]
S. Nurdiati, T. W. Mas’oed, M. K. Najib, and D. Rahmawati, “JOINT DISTRIBUTION AND PROBABILITY DENSITY OF CLIMATE FACTORS IN KALIMANTAN USING NESTED COPULAS”, BAREKENG: J. Math. & App., vol. 19, no. 2, pp. 1203-1216, Apr. 2025.