STRENGTHENING SYARIAH FINANCIAL MARKETS WITH GARCH-BASED STOCK PRICE FORECASTING AND VAR-RISK ASSESSMENT
Abstract
Indonesia, as the largest Muslim-majority country, has significant potential to enhance its Shariah financial sector, which has been growing rapidly, around 7.43% from 2023 to 2024, and contributing to the national economy. However, political and natural disasters have influenced the economy and Shariah-compliant stocks. This study focuses on forecasting Shariah-compliant stock prices using Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models and estimating investment risks via Value at Risk (VaR) for four Islamic banks listed in IDX: BRIS, BTPS, BANK, and PNBS. The findings indicate that GARCH models effectively capture stock price dynamics and provide accurate 10-day forecasts. Additionally, the models reliably predict VaR, validated through backtesting at various confidence levels. These insights are valuable for financial regulators and risk managers, aiding in policy design to ensure market stability by enabling the implementation of measures such as stricter capital reserve requirements for institutions with high-risk exposure and mandatory adoption of advanced risk management techniques like dynamic stress testing. Such policies not only mitigate systemic risks during periods of financial volatility but also enhance the overall resilience and robustness of the financial system. For investors, accurate risk predictions support informed decision-making, enhance portfolio protection, and optimize risk management.
Downloads
References
G. Budiprasetyo, M. Hani’ah, and D. Z. Aflah, ‘PREDIKSI HARGA SAHAM SYARIAH MENGGUNAKAN ALGORITMA LONG SHORT-TERM MEMORY (LSTM)’, TEKNOSI, vol. 8, no. 3, pp. 164–172, Jan. 2023, doi: 10.25077/TEKNOSI.v8i3.2022.164-172.
Otoritas Jasa Keuangan, ‘LAPORAN PERKEMBANGAN KEUANGAN SYARIAH INDONESIA 2023’. Accessed: Jul. 09, 2024. [Online]. Available: https://ojk.go.id/id/kanal/syariah/data-dan-statistik/laporan-perkembangan-keuangan-syariah-indonesia/Pages/Laporan-Perkembangan-Keuangan-Syariah-Indonesia-2023.aspx
Moh. Adenan, G. H. Safitri, and L. Yuliati, ‘MARKET SHARE BANK SYARIAH TERHADAP INSTITUSI KEUANGAN SYARIAH DI INDONESIA’, eJEBA, vol. 8, no. 1, p. 75, Mar. 2021, doi: 10.19184/ejeba.v8i1.21144.
M. K. Hassan, M. Saraç, and A. Khan, Eds., ISLAMIC FINANCE AND SUSTAINABLE DEVELOPMENT: A SUSTAINABLE ECONOMIC FRAMEWORK FOR MUSLIM AND NON-MUSLIM COUNTRIES. Cham, Switzerland: Palgrave Macmillan, 2021. doi: 10.1007/978-3-030-76016-8.
Nurwita, I. Fajri, Zuliani, Zulfan Yusuf, and Yuni Ayu Safitri, ‘DAMPAK SAHAM SYARIAH, OBLIGASI SYARIAH (SUKUK), DAN REKSADANA SYARIAH TERHADAP PERTUMBUHAN EKONOMI DI INDONESIA (STUDI KASUS 2011-2020)’, jemsi, vol. 9, no. 6, pp. 2423–2431, Dec. 2023, doi: 10.35870/jemsi.v9i6.1718.
A. Widiasari, M. F. Binashrillah, P. L. Lamuda, and S. W. Nengsih, ‘PENGARUH REKSA DANA SYARIAH, SAHAM SYARIAH, INFLASI, SUKUK, DAN EKSPOR TERHADAP PERTUMBUHAN EKONOMI INDONESIA PERIODE 2018-2022’, 2023.
A. Aman, ‘ISLAMIC MARKETING ETHICS FOR ISLAMIC FINANCIAL INSTITUTIONS’, IJOES, vol. 36, no. 1, pp. 1–11, Nov. 2019, doi: 10.1108/IJOES-12-2018-0182.
G. Taufik and O. Rusmana, ‘PERILAKU INVESTOR MUSLIM DALAM MEMUTUSKAN INVESTASI SAHAM SYARIAH PERIODE 2018-2023: SYSTEMATIC LITERATUR REVIEW’, JIEI, vol. 9, no. 2, p. 2105, Jul. 2023, doi: 10.29040/jiei.v9i2.8943.
Z. Aprilia, ‘ISU MUHAMMADIYAH MAU TARIK DANA DARI BSI, OJK BILANG GINI’, CNBC Indonesia. Accessed: Jul. 09, 2024. [Online]. Available: https://www.cnbcindonesia.com/market/20240610155841-17-545346/isu-muhammadiyah-mau-tarik-dana-dari-bsi-ojk-bilang-gini
CNN Indonesia, ‘2 ALASAN MUHAMMADIYAH TARIK DAN ALIHKAN DANA DARI BSI’, ekonomi. Accessed: Jul. 09, 2024. [Online]. Available: https://www.cnnindonesia.com/ekonomi/20240606100228-78-1106525/2-alasan-muhammadiyah-tarik-dan-alihkan-dana-dari-bsi
R. A. Y. Widyastuti, ‘TERUNGKAP ALASAN MUHAMMADIYAH MARAH DAN TARIK DANA DARI BSI, KARENA BANK TAK PRIORITASKAN UMKM?’, Tempo. Accessed: Jul. 09, 2024. [Online]. Available: https://bisnis.tempo.co/read/1881755/terungkap-alasan-muhammadiyah-marah-dan-tarik-dana-dari-bsi-karena-bank-tak-prioritaskan-umkm
L. Maulida Azzahra and R. Andni, ‘PENGARUH VARIABEL MAKROEKONOMI TERHADAP INDEKS SAHAM SYARIAH INDONESIA (ISSI) PADA TAHUN 2011-2022’, JSE, vol. 5, no. 1, pp. 45–69, May 2024, doi: 10.22373/jose.v5i1.4201.
R. Yang et al., ‘BIG DATA ANALYTICS FOR FINANCIAL MARKET VOLATILITY FORECAST BASED ON SUPPORT VECTOR MACHINE’, International Journal of Information Management, vol. 50, pp. 452–462, Feb. 2020, doi: 10.1016/j.ijinfomgt.2019.05.027.
L. Bagnato, V. Potì, and M. G. Zoia, ‘THE ROLE OF ORTHOGONAL POLYNOMIALS IN ADJUSTING HYPERPOLIC SECANT AND LOGISTIC DISTRIBUTIONS TO ANALYSE FINANCIAL ASSET RETURNS’, Stat Papers, vol. 56, no. 4, pp. 1205–1234, Nov. 2015, doi: 10.1007/s00362-014-0633-3.
T. Bollerslev, ‘GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY’, Journal of Econometrics, vol. 31, no. 3, pp. 307–327, Apr. 1986, doi: 10.1016/0304-4076(86)90063-1.
L. R. Glosten, R. Jagannathan, and D. E. Runkle, ‘ON THE RELATION BETWEEN THE EXPECTED VALUE AND THE VOLATILITY OF THE NOMINAL EXCESS RETURN ON STOCKS’, The journal of finance, vol. 48, no. 5, pp. 1779–1801, 1993.
M. Haas and C. Pigorsch, ‘FINANCIAL ECONOMICS, FAT-TAILED DISTRIBUTIONS.’, Encyclopedia of Complexity and Systems Science, vol. 4, no. 1, pp. 3404–3435, 2009.
L. G. Jorcano, SAMPLE SIZE, SKEWNESS AND LEVERAGE EFFECTS IN VALUE AT RISK AND EXPECTED SHORTFALL ESTIMATION, vol. 247. Ed. Universidad de Cantabria, 2020.
J.-M. Zakoian, ‘THRESHOLD HETEROSKEDASTIC MODELS’, Journal of Economic Dynamics and control, vol. 18, no. 5, pp. 931–955, 1994.
V. K. Shrotryia and H. Kalra, ‘HERDING IN THE CRYPTO MARKET: A DIAGNOSIS OF HEAVY DISTRIBUTION TAILS’, RBF, vol. 14, no. 5, pp. 566–587, Nov. 2022, doi: 10.1108/RBF-02-2021-0021.
M. Wątorek, J. Kwapień, and S. Drożdż, ‘FINANCIAL RETURN DISTRIBUTIONS: PAST, PRESENT, AND COVID-19’, Entropy, vol. 23, no. 7, p. 884, Jul. 2021, doi: 10.3390/e23070884.
T. Bollerslev, S. Z. Li, and B. Zhao, ‘GOOD VOLATILITY, BAD VOLATILITY, AND THE CROSS SECTION OF STOCK RETURNS’, J. Financ. Quant. Anal., vol. 55, no. 3, pp. 751–781, May 2020, doi: 10.1017/S0022109019000097.
E. S. Hasbullah, E. Rusyaman, and A. Kartiwa, ‘THE GARCH MODEL VOLATILITY OF SHARIA STOCKS ASSOCIATED CAUSALITY WITH MARKET INDEX’, IJQRM, vol. 1, no. 1, pp. 18–28, Feb. 2020, doi: 10.46336/ijqrm.v1i1.3.
J. Sen, S. Mehtab, and A. Dutta, ‘VOLATILITY MODELING OF STOCKS FROM SELECTED SECTORS OF THE INDIAN ECONOMY USING GARCH’, in 2021 Asian Conference on Innovation in Technology (ASIANCON), PUNE, India: IEEE, Aug. 2021, pp. 1–9. doi: 10.1109/ASIANCON51346.2021.9544977.
J. D. Cryer and K. Chan, TIME SERIES ANALYSIS: WITH APPLICATIONS IN R, 2nd ed. in Springer texts in statistics. New York: Springer, 2008.
P. A. A. R. Bhat, B. Shakila, P. Pinto, and I. T. Hawaldar, ‘COMPARING THE PERFORMANCE OF GARCH FAMILY MODELS IN CAPTURING STOCK MARKET VOLATILITY IN INDIA’, management, vol. 11, no. 3, pp. 11–20, Jan. 2024, doi: 10.34293/management.v11i3.7033.
P. R. Hansen, Z. Huang, C. Tong, and T. Wang, ‘REALIZED GARCH, CBOE VIX, AND THE VOLATILITY RISK PREMIUM’, Journal of Financial Econometrics, vol. 22, no. 1, pp. 187–223, Jan. 2024, doi: 10.1093/jjfinec/nbac033.
A. Nuryatin, ‘COMPARATIVE ANALYSIS OF ARIMA AND GARCH METHODS TO PREDICT STOCK PRICES’, Almana, vol. 4, no. 3, pp. 405–415, Dec. 2020, doi: 10.36555/almana.v4i3.1483.
M. Yu, ‘FORECASTING BITCOIN VOLATILITY: THE ROLE OF LEVERAGE EFFECT AND UNCERTAINTY’, Physica A: Statistical Mechanics and its Applications, vol. 533, p. 120707, Nov. 2019, doi: 10.1016/j.physa.2019.03.072.
B. Amirshahi and S. Lahmiri, ‘HYBRID DEEP LEARNING AND GARCH-FAMILY MODELS FOR FORECASTING VOLATILITY OF CRYPTOCURRENCIES’, Machine Learning with Applications, vol. 12, p. 100465, Jun. 2023, doi: 10.1016/j.mlwa.2023.100465.
A. H. A. Othman, S. M. Alhabshi, and R. Haron, ‘THE EFFECT OF SYMMETRIC AND ASYMMETRIC INFORMATION ON VOLATILITY STRUCTURE OF CRYPTO-CURRENCY MARKETS: A CASE STUDY OF BITCOIN CURRENCY’, Journal of Financial Economic Policy, vol. 11, no. 3, pp. 432–450, 2019.
M. Marobhe and D. Pastory, ‘MODELING STOCK MARKET VOLATILITY USING GARCH MODELS CASE STUDY OF DAR ES SALAAM STOCK EXCHANGE (DSE)’, Review of Integrative Business and Economics Research, vol. 9, no. 2, pp. 138–150, 2020.
R. S. Tsay, ANALYSIS OF FINANCIAL TIME SERIES (WILEY SERIES IN PROBABILITY AND STATISTICS), 3rd ed. Hoboken, New Jersey: John Wiley & Sons, Inc., 2010.
D. N. Gujarati and D. C. Porter, BASIC ECONOMETRICS, 5th ed. Boston: McGraw-Hill Irwin, 2009.
S. Bisgaard and M. Kulahci, ‘QUALITY QUANDARIES∗: BOX-COX TRANSFORMATIONS AND TIME SERIES MODELING—Part I’, Quality Engineering, vol. 20, no. 3, pp. 376–388, Jun. 2008, doi: 10.1080/08982110802151375.
R. Maciejewski, A. Pattath, Sungahn Ko, R. Hafen, W. S. Cleveland, and D. S. Ebert, ‘AUTOMATED BOX-COX TRANSFORMATIONS FOR IMPROVED VISUAL ENCODING’, IEEE Trans. Visual. Comput. Graphics, vol. 19, no. 1, pp. 130–140, Jan. 2013, doi: 10.1109/TVCG.2012.64.
S. Sharma, V. Aggarwal, and M. P. Yadav, ‘COMPARISON OF LINEAR AND NON-LINEAR GARCH MODELS FOR FORECASTING VOLATILITY OF SELECT EMERGING COUNTRIES’, JAMR, vol. 18, no. 4, pp. 526–547, Oct. 2021, doi: 10.1108/JAMR-07-2020-0152.
R. F. Engle, ‘AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY WITH ESTIMATES OF THE VARIANCE OF UNITED KINGDOM INFLATION’, Econometrica: Journal of the econometric society, pp. 987–1007, 1982.
R. D. F. Harris, C. Coskun Küçüközmen, and F. Yilmaz, ‘SKEWNESS IN THE CONDITIONAL DISTRIBUTION OF DAILY EQUITY RETURNS’, Applied Financial Economics, vol. 14, no. 3, pp. 195–202, Feb. 2004, doi: 10.1080/0960310042000187379.
E. A. Akpan and I. U. Moffat, ‘DETECTION AND MODELING OF ASYMMETRIC GARCH EFFECTS IN A DISCRETE-TIME SERIES’, IJSP, vol. 6, no. 6, p. 111, Oct. 2017, doi: 10.5539/ijsp.v6n6p111.
M. L. Higgins and A. K. Bera, ‘A CLASS OF NONLINEAR ARCH MODELS’, International Economic Review, pp. 137–158, 1992.
Z. Ding, C. W. Granger, and R. F. Engle, ‘A LONG MEMORY PROPERTY OF STOCK MARKET RETURNS AND A NEW MODEL’, Journal of empirical finance, vol. 1, no. 1, pp. 83–106, 1993.
L. Hentschel, ‘ALL IN THE FAMILY NESTING SYMMETRIC AND ASYMMETRIC GARCH MODELS’, Journal of Financial Economics, vol. 39, no. 1, pp. 71–104, Sep. 1995, doi: 10.1016/0304-405X(94)00821-H.
L. Wang and Z. Zhang, ‘RESEARCH ON SHANGHAI COPPER FUTURES PRICE FORECAST BASED ON X12-ARIMA-GARCH FAMILY MODELS’, in 2020 International Conference on Computer Information and Big Data Applications (CIBDA), Guiyang, China: IEEE, Apr. 2020, pp. 304–308. doi: 10.1109/CIBDA50819.2020.00075.
Y. Luan, S. Ye, Y. Li, L. Jia, and X.-G. Yue, ‘REVISITING NATURAL RESOURCES VOLATILITY VIA TGARCH AND EGARCH’, Resources Policy, vol. 78, p. 102896, Sep. 2022, doi: 10.1016/j.resourpol.2022.102896.
S. Barendse, E. Kole, and D. Van Dijk, ‘BACKTESTING VALUE-AT-RISK AND EXPECTED SHORTFALL IN THE PRESENCE OF ESTIMATION ERROR’, Journal of Financial Econometrics, vol. 21, no. 2, pp. 528–568, Mar. 2023, doi: 10.1093/jjfinec/nbab008.
N. G. Emenogu, M. O. Adenomon, and N. O. Nweze, ‘ON THE VOLATILITY OF DAILY STOCK RETURNS OF TOTAL NIGERIA PLC: EVIDENCE FROM GARCH MODELS, VALUE-AT-RISK AND BACKTESTING’, Financ Innov, vol. 6, no. 1, p. 18, Dec. 2020, doi: 10.1186/s40854-020-00178-1.
K. Vaniya and R. Gor, ‘BACK-TESTING APPROACHES FOR VALIDATING VAR MODELS’, Int. J. Eng. Sci. Tech, vol. 6, no. 6, Nov. 2022, doi: 10.29121/ijoest.v6.i6.2022.408.
C. He, G. Li, H. Fan, and W. Wei, ‘CORRELATION BETWEEN SHANGHAI CRUDE OIL FUTURES, STOCK, FOREIGN EXCHANGE, AND GOLD MARKETS: A GARCH-VINE-COPULA METHOD’, Applied Economics, vol. 53, no. 11, pp. 1249–1263, Mar. 2021, doi: 10.1080/00036846.2020.1828566.
D. Likitratcharoen, P. Chudasring, C. Pinmanee, and K. Wiwattanalamphong, ‘THE EFFICIENCY OF VALUE-AT-RISK MODELS DURING EXTREME MARKET STRESS IN CRYPTOCURRENCIES’, Sustainability, vol. 15, no. 5, p. 4395, Mar. 2023, doi: 10.3390/su15054395.
H. Wu, S. Chen, and Y. Ding, ‘COMPARISON OF ARIMA AND LSTM FOR STOCK PRICE PREDICTION’, FERM, vol. 6, no. 1, 2023, doi: 10.23977/ferm.2023.060101.
T. Budiman, Y. Satyakti, and E. Febrian, ‘ISLAMIC BANK SUSTAINABILITY: AN ECONOMETRIC APPROACH’, Asian Economic and Financial Review, vol. 11, no. 2, pp. 141–159, 2021, doi: 10.18488/journal.aefr.2021.112.141.159.
U. K. Oktaviana and T. Miranti, ‘FACTORS AFFECTING FINANCIAL STABILITY OF SHARIA BANKS IN INDONESIA’, Shirkah, vol. 9, no. 2, pp. 213–228, Mar. 2024, doi: 10.22515/shirkah.v9i2.563.
C. Guerello, ‘THE EFFECT OF INVESTORS’ CONFIDENCE ON MONETARY POLICY TRANSMISSION MECHANISM’, The North American Journal of Economics and Finance, vol. 37, pp. 248–266, Jul. 2016, doi: 10.1016/j.najef.2016.05.003.
F. Rahimian, Isfahan (Khorasgan) Branch, Islamic Azad University, H. Sharifi Renani, Isfahan (Khorasgan) Branch, Islamic Azad University, S. Ghobadi, and Isfahan (Khorasgan) Branch, Islamic Azad University, ‘THE IMPACT OF EXCHANGE RATE AND INVESTOR CONFIDENCE UNCERTAINTY ON MONETARY AND ECONOMIC UNCERTAINTY IN IRAN’, J. Mon. Ec., vol. 17, no. 1, pp. 115–136, Mar. 2022, doi: 10.52547/jme.17.1.115.
N. Qolbi, ‘SAHAM BIG CAPS BERTENGGER JADI LAGGARD IHSG JULI 2022, ADA YANG MENARIK DICERMATI’, kontan.co.id. Accessed: Aug. 16, 2024. [Online]. Available: https://investasi.kontan.co.id/news/saham-big-caps-bertengger-jadi-laggard-ihsg-juli-2022-ada-yang-menarik-dicermati
B. M. Jenkins, ‘CONSEQUENCES OF THE WAR IN UKRAINE: THE ECONOMIC FALLOUT’, Mar. 2023. Accessed: Jan. 06, 2025. [Online]. Available: https://www.rand.org/pubs/commentary/2023/03/consequences-of-the-war-in-ukraine-the-economic-fallout.html
H.-Y. Hu, ‘EVALUATING MULTI-HORIZON VOLATILITY-FORECASTING PERFORMANCES OF GARCH-TYPE MODELS’, PhD Thesis, Masters dissertation, 2019.
N. Marisetty, ‘APPLICATIONS OF GARCH MODELS IN FORECASTING FINANCIAL MARKET VOLATILITY: INSIGHTS FROM LEADING GLOBAL STOCK INDEXES’, SSRN Journal, 2024, doi: 10.2139/ssrn.4939422.
M. Haas, ‘A NEW APPROACH TO MARKOV-SWITCHING GARCH MODELS’, Journal of Financial Econometrics, vol. 2, no. 4, pp. 493–530, Sep. 2004, doi: 10.1093/jjfinec/nbh020.
M. G. Sampid, H. M. Hasim, and H. Dai, ‘REFINING VALUE-AT-RISK ESTIMATES USING A BAYESIAN MARKOV-SWITCHING GJR-GARCH COPULA-EVT MODEL’, PLoS ONE, vol. 13, no. 6, p. e0198753, Jun. 2018, doi: 10.1371/journal.pone.0198753.
G. Sema, M. A. Konté, and A. K. Diongue, ‘A DYNAMIC MARKOV REGIME-SWITCHING ASYMMETRIC GARCH MODEL AND ITS CUMULATIVE IMPULSE RESPONSE FUNCTION’, jas, vol. 16, no. 1, pp. 2537–2559, Jan. 2021, doi: 10.16929/as/2021.2537.173.
M. Chocholatá, ‘VOLATILITY REGIMES OF SELECTED CENTRAL EUROPEAN STOCK RETURNS: A MARKOV SWITCHING GARCH APPROACH’, Journal of Business Economics and Management, vol. 23, no. 4, pp. 876–894, Apr. 2022, doi: 10.3846/jbem.2022.16648.
Copyright (c) 2025 Darmanto Darmanto, Isnani Darti, Suci Astutik, Nurjannah Nurjannah, Muhammad Hisyam Lee, Rismania Hartanti Putri Yulianing Damayanti, Diego Irsandy

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.