ANALYTICAL APPROACH OF GENERALIZED LINEAR MODELS FOR HANDLING OVERDISPERSION IN POVERTY DATA OF INDONESIA

  • Restu Arisanti Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia https://orcid.org/0000-0001-9601-9731
  • Resa Septiani Pontoh Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia https://orcid.org/0000-0001-9601-9731
  • Sri Winarni Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia https://orcid.org/0009-0009-6391-2051
  • Fellita Odelia Wibowo Bachelor Degree of Statistics Department, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia https://orcid.org/0009-0004-6359-5440
  • Hanifah Khairunnisa Bachelor Degree of Statistics Department, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia https://orcid.org/0009-0008-8378-1223
  • Raissheva Andika Pratama Bachelor Degree of Statistics Department, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia https://orcid.org/0009-0002-7614-3625
Keywords: Generalized Poisson Regression, Negative Binomial Regression, Overdispersion, Poverty

Abstract

Poverty is one of the complex phenomena that occurs in Indonesia. Various socio-economic variables in Indonesia influence poverty, which we can mathematically model using the Generalized Linear Model (GLM) framework. In this study, we modeled data on the number of poor people per province in 2023 taken from the Badan Pusat Statistik of Indonesia website. The response variable in this study was initially assumed to exhibit equidispersion, where the variance equals the mean. However, the observed variance exceeded the mean, indicating overdispersion. Consequently, Negative Binomial Regression, an extension of the GLM that introduces an additional dispersion parameter, was applied to account for this overdispersion. This approach accommodates overdispersed count data by incorporating a gamma-distributed latent variable. The aim of this study is to determine the best model using Negative Binomial Regression in handling overdispersion in Indonesia's poverty data. This model was chosen for its robustness in capturing increased data variability, enabling the identification of factors that influence poverty. The results of this study offer a mathematically rigorous approach to better understand the underlying dynamics of poverty across provinces in Indonesia.

Downloads

Download data is not yet available.

References

C.M. Annur, “PENGANGGURAN HINGGA KORUPSI, BERIKUT DERETAN PERMASALAHAN UTAMA DI INDONESIA”, Databoks, February 12, 2022. https://databoks.katadata.co.id/politik/statistik/3f01dd4ce5bbbbd/pengangguran-hingga-korupsi-berikut-deretan-permasalahan-utama-di-indonesia.

Kencana, Maulandy. “27,5 JUTA PENDUDUK INDONESIA MASIH HIDUP DI BAWAH GARIS KEMISKINAN.” Liputan6, July 15 2021, https://www.liputan6.com/bisnis/read/4607701/275-juta-penduduk-indonesia-masih-hidup-di-bawah-garis-kemiskinan.

Kementerian Koordinator Bidang Pembangunan Manusia dan Kebudayaan. “ANGKA KEMISKINAN EKSTREM 2023 TURUN 1,12 %.” Kemenko PMK, July 24 2023, https://www.kemenkopmk.go.id/angka-kemiskinan-ekstrem-2023-turun-112.

Santia, Tira. ‘MEMAHAMI ARTI KEMISKINAN EKSTREM, JADI MOMOK INDONESIA SEJAK ERA SOEKARNO’. Liputan6, February 21 2023, https://www.liputan6.com/bisnis/read/5213002/memahami-arti-kemiskinan-ekstrem-jadi-momok-indonesia-sejak-era-soekarno.

Gischa, Serafica. ‘6 DAMPAK KEMISKINAN DI INDONESIA’. Kompas, May 2023, https://www.kompas.com/skola/read/2023/05/02/200000769/6-dampak-kemiskinan-di-indonesia.

Marfi’ah, Marfiatun and Siti Fatimah Nurhayati. ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI KEMISKINAN DI INDONESIA TAHUN 2020. 2022. Universitas Muhammadiyah Surakarta, https://eprints.ums.ac.id/106053/.

Sinurat, Ronaldo Putra Pratama. “ANALISIS FAKTOR-FAKTOR PENYEBAB KEMISKINAN SEBAGAI UPAYA PENANGGULANGAN KEMISKINAN DI INDONESIA.” Jurnal Registratie, vol. 5, no. 2, December 2023, doi: https://doi.org/10.33701/jurnalregistratie.v5i2.3554.

Anak Agung Eriek Estrada and I Wayan Wenagama. “PENGARUH LAJU PERTUMBUHAN EKONOMI, INDEKS PEMBANGUNAN MANUSIA DAN TINGKAT PENGANGGURAN TERHADAP TINGKAT KEMISKINAN”. E-Jurnal Ekonomi Pembangunan Universitas Udayana, vol. 8, no. 7, 2019, pp. 1637–65.

D.D. Jayanti, “MANA YANG JADI ACUAN, UMP ATAU UMK?”, Hukumonline, January 24, 2023. https://www.hukumonline.com/klinik/infografik/mana-yang-jadi-acuan--ump-atau-umk-lt5c3ff5679371c/.

Aristanti, Nimas. “KETAHUI HUBUNGAN INVESTASI DAN PERTUMBUHAN EKONOMI MENURUT TEORI HARROD-DOMAR”. KoinWorks, October 2019, https://koinworks.com/blog/teori-harrod-domar/.

Kementerian Sekretariat Negara RI Sekretariat Wakil Presiden. ‘TARGETKAN PENURUNAN ANGKA KEMISKINAN 7,5 PERSEN DI 2024, WAPRES MINTA K/L TERKAIT OPTIMALKAN PROGRAM DAN ANGGARAN’. Stunting.Go.Id, February 23 2024, https://stunting.go.id/targetkan-penurunan-angka-kemiskinan-75-persen-di-2024-wapres-minta-k-l-terkait-optimalkan-program-dan-anggaran/.

Badan Pusat Statistik Provinsi Jawa Timur. PERSENTASE PENDUDUK MISKIN MENURUT PROVINSI (PERSEN), 2023. July 17 2023, https://jatim.bps.go.id/id/statistics-table/2/MzQ0IzI=/persentase-penduduk-miskin-menurut-provinsi-.html.

Sekretariat Wakil Presiden Republik Indonesia. “PENUHI TARGET NOL PERSEN PADA 2024, PEMERINTAH TERUS LANJUTKAN STRATEGI.” Wakil Presiden Republik Indonesia, December 2023, https://www.wapresri.go.id/penuhi-target-nol-persen-pada-2024-pemerintah-terus-lanjutkan-strategi-percepatan-penghapusan-kemiskinan-ekstrem/.

Irawan, Cynthia. “10 PENGERTIAN KEMISKINAN MENURUT PARA AHLI, YUK DICEK!” IDN Times, February 28 2023, https://www.idntimes.com/business/economy/seo-intern-idn-times/10-pengertian-kemiskinan-menurut-para-ahli-yuk-dicek?page=all.

Ningrum, Shinta Setya. “ANALISIS PENGARUH TINGKAT PENGANGGURAN TERBUKA, INDEKS PEMBANGUNAN MANUSIA, DAN UPAH MINIMUM TERHADAP JUMLAH PENDUDUK MISKIN DI INDONESIA TAHUN 2011-2015.” Jurnal Ekonomi Pembangunan, vol. 15, no. 2, December 2017, doi: https://doi.org/10.22219/jep.v15i2.5364.

Sukirno and Sadono, Makroekonomi: TEORI PENGANTAR / SADONO SUKIRNO, 1st ed, Jakarta: RajaGrafindo Persada, 2008.

Li, Sheng, et al. “MOVING TOWARDS A SUSTAINABLE ENVIRONMENT IN THE BRICS ECONOMIES: WHAT ARE THE EFFECTS OF FINANCIAL DEVELOPMENT, RENEWABLE ENERGY AND NATURAL RESOURCES WITHIN THE LCC HYPOTHESIS?”. Elsevier, vol. 88, January 2024, doi: https://doi.org/10.1016/j.resourpol.2023.104457.

A. Tetsuya and N. Ichiro “STATISTICAL EVALUATION OF CLUSTER FORMATION OF RELAPSE IN NEUROMYELITIS OPTICA SPECTRUM DISORDER”. Neural Regeneration Research, vol. 19, no. 9, pp. 1888-1889, September 2024, doi: https://doi.org/10.4103/1673-5374.390980.

R. R. Hocking, METHODS AND APPLICATIONS OF LINEAR MODELS, 2nd ed, New York: John Wiley and Sons, Inc., 1996.

R. Cahyandari. “Pengujian Overdispersi Pada Model Regresi Poisson”. E-Jurnal UNISBA, vol. 14, no. 20, 2014, pp. 69–76.

Tiara Y., Aidi, M.N., Erfiani, Rachmawati, R. “OVERDISPERSION HANDLING IN POISSON REGRESSION MODEL BY APPLYING NEGATIVE BINOMIAL REGRESSION.” BAREKENG: Journal of Mathematics and Its Applications, vol. 17, no. 1, April 2023, doi: https://doi.org/10.30598/barekengvol17iss1pp0417-0426.

A. Agresti, CATEGORICAL DATA ANALYSIS, 3RD EDITION, New Jersey: John Wiley and Sons, 2013.

Jamal I. Daoud. “MULTICOLLINEARITY AND REGRESSION ANALYSIS”. Journal of Physics: Conference Series, vol. 949, 2017, doi: https://doi.org/10.1088/1742-6596/949/1/012009.

Simarmata, Rio Tongaril, and Dwi Ispriyanti. “PENANGANAN OVERDISPERSI PADA MODEL REGRESI POISSON MENGGUNAKAN MODEL REGRESI BINOMIAL NEGATIF.” Media Statistika, Vol. 4, No. 2, December 2011, Doi: Https://Doi.Org/10.14710/Medstat.4.2.95-104.

Handayani, Deby. “KARAKTERISASI SEBARAN BINOMIAL NEGATIF”. Jurnal Matematika UNAND, vol. 5, no. 2, 2016, pp. 65–70.

Hilbe, J.M. NEGATIVE BINOMIAL REGRESSION, 2nd ed, New York: Cambridge University Press, 2011.

Ariani, P. , and Widodo, E. “ANALISIS FAKTOR PENYEBAB PENYAKIT DBD DI JAWA TENGAH MENGGUNAKAN REGRESI BINOMIAL NEGATIF.” Jurnal Kesehatan Vokasional, vol. 3, no. 1, May 2018, doi: https://doi.org/10.22146/jkesvo.33870.

R. H. Myers, D.C. Montgomery, G. G. Vining and T.J. Robinson, GENERALIZED LINEAR MODELS WITH APPLICATIONS IN ENGINEERING AND SCIENCES, 2nd ed, New Jersey: John Wiley and Sons, 2010.

W. Zucchini, “AN INTRODUCTION TO MODEL SELECTION,” Journal of Mathematical Psychology, vol. 44, no. 1, 2000, pp. 41–61, doi: https://doi.org/10.1006/jmps.1999.1276.

Arisanti, R., Pontoh, R.S., Winarni, S., Nurhasanah, Y., Pertiwi, A.P., Aini, S.D.N. “INTEGRATING GENERALIZED LINEAR MIXED MODELS WITH EXTREME NEURAL NETWORK: ENHANCING PULMONARY TUBERCULOSIS RISK MODELING IN WEST JAVA, INDONESIA”. COMMUN. MATH BIOL NEUROSCI, 2024, P. 85.

M.P. Todaro and S.C. Smith, PEMBANGUNAN EKONOMI DI DUNIA KETIGA, 9th ed, Jakarta: Erlangga, 2006.

Badan Pusat Statistik. JUMLAH DAN PERSENTASE PENDUDUK MISKIN MENURUT PROVINSI, 2023. Badan Pusat Statistik Indonesia. 2023

Badan Pusat Statistik Indeks Pembangunan Manusia Menurut Provinsi, 2023. Badan Pusat Statistik Indonesia. 2023

Satudata Kemnaker. Upah Minimum Provinsi (UMP) Tahun 2023. Kementerian Ketenagakerjaan Republik Indonesia. 2023.

Badan Pusat Statistik. Realisasi Investasi Penanaman Modal Dalam Negeri Menurut Lokasi - Jumlah Investasi (Milyar Rupiah), 2021-2023. Badan Pusat Statistik Indonesia.

Kurniadi Arif. Pengentasan dari Kemiskinan: STRATEGI DAN PERAN KPPN SELAKU TREASURER DAN FINANCIAL ADVISOR. Kementerian Keuangan Republik Indonesia. 2023

Chakravarti I.M, Laha R.G, and Roy J. HANDBOOK OF METHODS OF APPLIED STATISTICS. Volume I. John Wiley and son, 1967.

Published
2025-07-01
How to Cite
[1]
R. Arisanti, R. S. Pontoh, S. Winarni, F. O. Wibowo, H. Khairunnisa, and R. A. Pratama, “ANALYTICAL APPROACH OF GENERALIZED LINEAR MODELS FOR HANDLING OVERDISPERSION IN POVERTY DATA OF INDONESIA”, BAREKENG: J. Math. & App., vol. 19, no. 3, pp. 1575-1586, Jul. 2025.