LEVEL SOFT GROUP AND ITS PROPERTIES

  • Saman Abdurrahman Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lambung Mangkurat, Indonesia https://orcid.org/0000-0001-9120-5922
  • Mochammad Idris Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lambung Mangkurat, Indonesia https://orcid.org/0000-0002-7868-337X
  • Faisal Faisal Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lambung Mangkurat, Indonesia
  • Na’imah Hijriati Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lambung Mangkurat, Indonesia https://orcid.org/0000-0002-7622-8816
  • Thresye Thresye Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lambung Mangkurat, Indonesia https://orcid.org/0009-0001-6310-2843
  • Aprida Siska Lestia Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lambung Mangkurat, Indonesia https://orcid.org/0000-0003-0045-9893
Keywords: Level soft group, Level soft set, Soft set, Soft group

Abstract

In this paper, we present an application of fuzzy subset and fuzzy subgroup to a soft set and a soft group, thereby creating a soft set and a soft group within the same group. Furthermore, we refer to the soft and soft groups as level soft sets and level soft groups. We also found out the level of soft sets and the operations on soft sets, such as intersection, union, and subset. We also examine what conditions a fuzzy subgroup and a soft group must meet to form a level soft group. Moreover, we scrutinize the properties of operations on a soft set, specifically intersection, union, and AND, and apply them to the level soft group to ascertain if they consistently produce a level soft group over the same set. Furthermore, we investigate the formation of a level soft and level soft group resulting from the homomorphism of the group and soft group. The research findings can enrich studies on the relationships between structures in fuzzy subgroups and soft groups and the application of soft group levels in further research.

Downloads

Download data is not yet available.

References

L. A. Zadeh, “FUZZY SETS,” Inf. Control, vol. 8, no. 3, pp. 338–353, 1965, doi: https://doi.org/10.1016/S0019-9958(65)90241-X.

A. Rosenfeld, “FUZZY GROUPS,” J. Math. Anal. Appl., vol. 35, no. 3, pp. 512–517, Sep. 1971, doi: https://doi.org/10.1016/0022-247X(71)90199-5.

S. Abdurrahman, “IMAGE (PRE-IMAGE) HOMOMORFISME INTERIOR SUBGRUP FUZZY,” J. Fourier, vol. 8, no. 1, pp. 15–18, Apr. 2019, doi: https://doi.org/10.14421/fourier.2019.81.15-18.

S. Abdurrahman, “INTERIOR SUBGRUP Ω-FUZZY,” Fibonacci J. Pendidik. Mat. dan Mat., vol. 6, no. 2, pp. 91–98, 2020, doi: https://doi.org/10.24853/fbc.6.2.91-98.

S. Abdurrahman, “HOMOMORPHISMS AND (Λ, µ] – FUZZY SUBGROUP,” AIP Conf. Proc., vol. 2577, no. 1, p. 20001, Jul. 2022, doi: https://doi.org/10.1063/5.0096015

U. Shuaib, M. Shaheryar, and W. Asghar, “ON SOME CHARACTERIZATIONS OF O-FUZZY SUBGROUPS,” Int. J. Math. Comput. Comput. Sci., vol. 13, no. 2, pp. 119–131, 2018.

S. Abdurrahman, Thresye, A. H. Arif, Jumiati, and T. R. Jannah, “HASIL KALI SILANG Ω-SUBSEMIRING FUZZY,” Epsil. J. Mat. Murni Dan Terap., vol. 17, no. 2, pp. 177–185, 2023, doi: DOI: https://doi.org/10.20527/epsilon.v17i2.8748.

S. Abdurrahman, “KARAKTERISTIK SUBSEMIRING FUZZY,” J. Fourier, vol. 9, no. 1, pp. 19–23, 2020, doi: https://doi.org/10.14421/fourier.2020.91.19-23

S. Abdurrahman, Thresye, A. H. Arif, and R. D. Zahroo, “CARTESIAN PRODUCT OF FUZZY SUBSEMIRING,” IN PROCEEDING OF THE 7TH NATIONAL CONFERENCE ON MATHEMATICS AND MATHEMATICS EDUCATION (SENATIK), Semarang, Indonesia: AIP Publishing, 2024, pp. 1–6. doi: 10.1063/5.0194560.

S. Abdurrahman, “IDEAL FUZZY SEMIRING ATAS LEVEL SUBSET,” J. Fourier, vol. 11, no. 1, pp. 1–6, 2022, doi: 10.14421/fourier.2022.111.1-6.doi: https://doi.org/10.14421/fourier.2022.111.1-6

S. Abdurrahman, “CROSS PRODUCT OF IDEAL FUZZY SEMIRING,” Barekeng J. Math. Its Appl., vol. 17, no. 2, pp. 1131–1138, 2023.doi: https://doi.org/10.30598/barekengvol17iss2pp1131-1138

D. Molodtsov, “SOFT SET THEORY—FIRST RESULTS,” Comput. Math. with Appl., vol. 37, no. 4–5, pp. 19–31, Feb. 1999, doi: https://doi.org/10.1016/S0898-1221(99)00056-5.

N. Blackburn and L. Hethelyi, “SOME FURTHER PROPERTIES OF SOFT SUBGROUPS,” Arch. der Math., vol. 69, no. 5, pp. 365–371, Nov. 1997, doi: ttps://doi.org/10.1007/s000130050134.

X. Yin and Z. Liao, “STUDY ON SOFT GROUPS,” J. Comput., vol. 8, no. 4, pp. 960–967, Apr. 2013, doi: https://doi.org/10.4304/jcp.8.4.960-967.

H. Aktaş and N. Çağman, “SOFT SETS AND SOFT GROUPS,” Inf. Sci. (Ny)., vol. 177, no. 13, pp. 2726–2735, Jul. 2007, doi: https://doi.org/10.1016/j.ins.2006.12.008.

R. Barzegar, S. B. Hosseini, and N. Çağman, “SECOND TYPE NILPOTENT SOFT SUBGROUPS,” Afrika Mat., vol. 34, no. 1, pp. 1–16, 2023, doi: ttps://doi.org/10.1007/s13370-023-01045-9.

A. I. Alajlan and A. M. Alghamdi, “SOFT GROUPS AND CHARACTERISTIC SOFT SUBGROUPS,” Symmetry (Basel)., vol. 15, no. 7, 2023, doi: https://doi.org/10.3390/sym15071450

A. Aygünoǧlu and H. Aygün, “INTRODUCTION TO FUZZY SOFT GROUPS,” Comput. Math. with Appl., vol. 58, no. 6, pp. 1279–1286, 2009, doi: https://doi.org/10.1016/j.camwa.2009.07.047.

N. Sarala and B. Suganya, “ON NORMAL FUZZY SOFT GROUP,” Int. J. Math. Trends Technol., vol. 10, no. 2, pp. 70–75, 2014, doi: https://doi.org/10.14445/22315373/IJMTT-V10P512.

Ç. Yildiray, “A NEW APPROACH TO GROUP THEORY VIA SOFT SETS AND L-FUZZY SOFT SETS,” Int. J. Pure Appl. Math., vol. 105, no. 3, pp. 459–475, 2015, doi: https://doi.org/10.12732/ijpam.v105i3.14.

H. Mathematical, “LATTICE ORDERED FUZZY SOFT GROUPS Tahir Mahmood ∗ , and Naveed Ahmad Shah,” vol. 40, no. 3, pp. 457–486, 2018.

C. AKIN, “GP-FUZZY SOFT GROUPS,” Erzincan Üniversitesi Fen Bilim. Enstitüsü Derg., vol. 12, no. 2, pp. 759–770, 2019, doi: https://doi.org/10.18185/erzifbed.486806.

S. Nazmul, “SOME PROPERTIES OF SOFT GROUPS AND FUZZY SOFT GROUPS UNDER SOFT MAPPINGS,” Palest. J. Math., vol. 8, no. 1, pp. 189–199, 2019.

C. Akin, “MULTI-FUZZY SOFT GROUPS,” Soft Comput., vol. 25, no. 1, pp. 137–145, 2021, doi: https://doi.org/10.1007/s00500-020-05471-w.

S. Abdurrahman, “GRUP DAN SUBGRUP,” IN PENGANTAR TEORI GRUP, 1st ed., Banjarbaru: Kalam Emas, 2022, ch. 2, pp. 95–159.

J. N. Mordeson, K. R. Bhutani, and A. Rosenfeld, “FUZZY SUBSETS AND FUZZY SUBGROUPS BT - FUZZY GROUP THEORY,” J. N. MORDESON, K. R. BHUTANI, AND A. ROSENFELD, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 1–39. doi: 1 https://doi.org/10.1007/10936443_1.

S. J. John, “SOFT SETS,” IN SOFT SETS: THEORY AND APPLICATIONS, S. J. John, Ed., Gewerbestrasse 11, 6330 Cham, Switzerland: Springer International Publishing, 2021, ch. 1, pp. 3–36. doi: https://doi.org/10.1007/978-3-030-57654-7_1.

S. Abdurrahman, “SOFT GROUPOID AND ITS PROPERTIES,” Epsil. J. Pure Appl. Math., vol. 18, no. 2, pp. 203–209, 2024, doi: https://doi.org/10.20527/epsilon.v18i2.13781.

Published
2025-07-01
How to Cite
[1]
S. Abdurrahman, M. Idris, F. Faisal, N. Hijriati, T. Thresye, and A. S. Lestia, “LEVEL SOFT GROUP AND ITS PROPERTIES”, BAREKENG: J. Math. & App., vol. 19, no. 3, pp. 2263-2274, Jul. 2025.