THE TRIPLE IDEMPOTENT GRAPH OF THE RING Z_n

  • Vika Yugi Kurniawan Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Sebelas Maret, Indonesia https://orcid.org/0000-0001-8475-7243
  • Bayu Purboutomo Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Sebelas Maret, Indonesia https://orcid.org/0009-0008-6472-0054
  • Nughthoh Arfawi Kurdhi Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Sebelas Maret, Indonesia https://orcid.org/0000-0001-9274-1807
Keywords: Diameter, Eulerian, Girth, Hamiltonian, Ring Z_n, The Triple Idempotent Graph

Abstract

Let  be a commutative ring, and  denote the set of all idempotent elements of . The triple idempotent graph of , denoted by , is defined as an undirected simple graph whose vertex set . Two distinct vertices u and v in  are adjacent if and only if there exists  where  and  such that , and . This definition generalizes the notion of an idempotent divisor graph by involving a triple product, which allows deeper exploration of the combinatorial behavior of idempotents in rings. In this research, we investigate the properties of the triple idempotent graph of the ring of integers modulo n, denoted by . As a results, we establish that  and , provided that the graph is connected. Furthermore,  is Hamiltonian if n is a prime and , and Eulerian if n is a prime and .

Downloads

Download data is not yet available.

References

I. Beck, “COLORING OF COMMUTATIVE RINGS,” J. Algebr., vol. 116, no. 1, pp. 208–226, 1988, doi: https://doi.org/10.1016/0021-8693(88)90202-5

D. F. Anderson and P. S. Livingston, “THE ZERO-DIVISOR GRAPH OF A COMMUTATIVE RING,” J. Algebr., vol. 217, no. 2, pp. 434–447, 1999, doi: https://doi.org/10.1006/jabr.1998.7840.

R. Akhtar and L. Lee, “CONNECTIVITY OF THE ZERO-DIVISOR GRAPH FOR FINITE RINGS,” Involv. (Journal Math. ), vol. 9, no. 3, pp. 415–422, 2016.doi: https://doi.org/10.2140/involve.2016.9.415

D. Nongsiang and P. K. Saikia, “ON THE NON-NILPOTENT GRAPHS OF A GROUP,” Int. Electron. J. Algebr., vol. 22, no. 09, pp. 78–96, 2017, doi: https://doi.org/10.24330/ieja.325927.

F. Mahmudi and M. Soleimani, “SOME PROPERTIES OF THE MAXIMAL GRAPH OF A COMMUTATIVE RING,” Southeast Asian Bull. Math., vol. 43, pp. 525–536, 2019.

R. Yudatama, V. Y. Kurniawan, and S. B. Wiyono, “ANNIHILATOR GRAPH OF SEMIRING OF MATRICES OVER BOOLEAN SEMIRING,” J. Phys. Conf. Ser., vol. 1494, no. 1, 2020, doi: https://doi.org/10.1088/1742-6596/1494/1/012009.

K. F. Pawar and S. S. Joshi, “STUDY OF PRIME GRAPH OF A RING,” Thai J. Math., vol. 17, no. 2, pp. 369–377, 2019.

M. Afkhami and M. Hassankhani, “THE CAYLEY SUM GRAPH OF IDEALS OF A LATTICE,” Gen. Algebr. Appl., vol. 40, pp. 217–230, 2020, doi: https://doi.org/10.7151/dmgaa.1332.

I. N. Fitriani and V. Y. Kurniawan, “ALGORITHM FOR CONSTRUCTING THE TRIPLE UNIT GRAPH OF TYPE II OF RING Z_n USING PYTHON,” BAREKENG J. Ilmu Mat. dan Terap., vol. 18, no. 3, pp. 1639–1648, 2024, doi: https://doi.org/10.30598/barekengvol18iss3pp1639-1648.

V. Y. Kurniawan and C. F. Ekasiwi, “ALGORITHM FOR CONSTRUCTING TRIPLE IDENTITY GRAPH OF RING Z_n USING PYTHON,” BAREKENG J. Ilmu Mat. dan Terap., vol. 18, no. 3, pp. 1629–1638, 2024, doi: https://doi.org/10.30598/barekengvol18iss3pp1629-1638.

I. Dolinka et al., “ENUMERATION OF IDEMPOTENTS IN DIAGRAM SEMIGROUPS AND ALGEBRAS,” J. Comb. Theory. Ser. A, vol. 131, pp. 119–152, 2015, doi: https://doi.org/10.1016/j.jcta.2014.11.008.

V. G. Bardakov, I. B. S. Passi, and M. Singh, “ZERO-DIVISORS AND IDEMPOTENTS IN QUANDLE RINGS,” Osaka J. Math., vol. 59, no. 3, pp. 611–637, 2022.

E. S. Almotairi, M. I. Bhat, and A. M. Alghamdi, “GROUP ACTION ON THE SET OF NONUNITS IN RINGS,” J. Math., vol. 2023, no. ii, pp. 0–3, 2023, doi: https://doi.org/10.1155/2023/9711759.

H. Su and Y. Wei, “THE DIAMETER OF UNIT GRAPHS OF RINGS,” Taiwan. J. Math., vol. 23, no. 1, pp. 1–10, 2019, doi: https://doi.org/10.11650/tjm/180602.

A. Sharma and D. K. Basnet, “NIL CLEAN DIVISOR GRAPH,” pp. 1–9, 2019, [Online]. Available: http://arxiv.org/abs/1903.02287

B. A. Rather, S. Pirzada, T. A. Naikoo, and Y. Shang, “ON LAPLACIAN EIGENVALUES OF THE ZERO-DIVISOR GRAPH ASSOCIATED TO THE RING OF INTEGERS MODULO N,” Mathematics, vol. 9, no. 5, pp. 1–17, 2021, doi: https://doi.org/10.3390/math9050482.

J. East and R. D. Gray, “DIAGRAM MONOIDS AND GRAHAM–HOUGHTON GRAPHS: IDEMPOTENTS AND GENERATING SETS OF IDEALS,” J. Comb. Theory. Ser. A, vol. 146, pp. 63–128, 2017, doi: https://doi.org/10.1016/j.jcta.2016.09.001.

G. L. Litvinov, V. P. Maslov, A. Y. Rodionov, and A. N. Sobolevski, “UNIVERSAL ALGORITHMS, MATHEMATICS OF SEMIRINGS AND PARALLEL COMPUTATIONS,” Lect. Notes Comput. Sci. Eng., vol. 75 LNCSE, pp. 63–89, 2011, doi: https://doi.org/10.1007/978-3-642-14941-2_4.

S. Pirzada and M. Aijaz, “METRIC AND UPPER DIMENSION OF ZERO DIVISOR GRAPHS ASSOCIATED TO COMMUTATIVE RINGS,” Acta Univ. Sapientiae, Inform., vol. 12, no. 1, pp. 84–101, 2020, doi: https://doi.org/10.2478/ausi-2020-0006.

A. Li and Q. Li, “A KIND OF GRAPH STRUCTURE ON NON-REDUCED RINGS,” Algebr. Colloq., vol. 17, no. 1, pp. 173–180, 2010, doi: https://doi.org/10.1142/S1005386710000180.

M. Schaps, “THE COARSE STRUCTURE OF THE REPRESENTATION ALGEBRA OF A FINITE MONOID,” J. Discret. Math., vol. 2014, pp. 1–7, 2014, doi: https://doi.org/10.1155/2014/529804.

S. Chattopadhyay, K. L. Patra, and B. K. Sahoo, “LAPLACIAN EIGENVALUES OF THE ZERO DIVISOR GRAPH OF THE RING ZN,” Linear Algebra Appl., vol. 584, pp. 267–286, 2020, doi: https://doi.org/10.1016/j.laa.2019.08.015.

C. Maldonado and D. Penazzi, “Lattices and {N}orton Algebras of {J}ohnson, {G}rassmann and {H}amming Graphs,” no. 1204.1947, pp. 1–16, 2012, [Online]. Available: http://arxiv.org/abs/1204.1947

H. Q. Mohammad and N. H. Shuker, “Idempotent Divisor Graph of Commutative Ring,” Iraqi J. Sci., vol. 63, no. 2, pp. 645–651, 2022, doi: 10.24996/ijs.2022.63.2.21.

V. Y. Kurniawan, B. Purboutomo, and N. A. Kurdhi, “Connectivity of The Triple Idempotent Graph of Ring Zn,” Int. J. Comput. Sci. Appl. Math., vol. 10, no. 1, pp. 34–37, 2024, doi: http://dx.doi.org/10.12962/j24775401.v10i1.20266.

G. Chartrand, L. Lesniak, and P. Zhang, Graphs & digraphs, 6th ed. New York: CRC Pers Taylor and Francis Group, 2016. doi: 10.1201/b19731.

Published
2025-07-01
How to Cite
[1]
V. Y. Kurniawan, B. Purboutomo, and N. A. Kurdhi, “THE TRIPLE IDEMPOTENT GRAPH OF THE RING Z_n”, BAREKENG: J. Math. & App., vol. 19, no. 3, pp. 2219-2228, Jul. 2025.