THE RAINBOW VERTEX-CONNECTION NUMBERS OF WHEEL-SHIELD GRAPHS

  • Ratnaning Palupi Business Administration Study Program, Politeknik Negeri Malang, Indonesia https://orcid.org/0009-0007-9959-5823
  • A. N. M. Salman Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia https://orcid.org/0000-0001-6895-6234
Keywords: Rainbow Vertex Connection Number, Shield Graph, Wheel

Abstract

Let  be a nontrivial simple connected graph,  be an edge of  and  be an integer greater than or equal to . A path of order , denoted by , is a graph whose vertices can be labelled  such that . A -shield graph is a graph obtained by  and  copies of  such that the  edge of -th  embedded to -th edge of  by embedding  to  and  to . A path in a vertex-colored graph is said to be rainbow-vertex path if every internal vertex in the path has different color. A vertex-colored graph is said to be rainbow-vertex connected if for every pair of vertices there exists a rainbow-vertex path connecting them. The rainbow- vertex connection number of , denoted by , is the minimum colors needed to make  rainbow-vertex connected. In this paper, we determine the rainbow-vertex connection numbers of of wheel-shield graphs , specifically finding that the number ranges from  to  depending on the order of the wheel.

Downloads

Download data is not yet available.

References

R. Sidabutar, “HASIL BELAJAR MATEMATIKA SISWA DITINJAU DARI KEBIASAAN BELAJAR DAN LINGKUNGAN BELAJAR,” Jurnal Pendidikan, vol. 19, no. 2, pp. 98–108, Dec. 2018.doi: https://doi.org/10.26740/jpeka.v2n1.p19-28

M. Mahfudhotin and R. Palupi, “THE SAMPLE SCHEDULING APPLICATION OF THE ANT COLONY OPTIMIZATION ALGORITHM IN VEHICLE ROUTING PROBLEM TO FIND THE SHORTEST ROUTE,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 18, no. 1, pp. 0643–0656, Mar. 2024, doi: https://doi.org/10.30598/barekengvol18iss1pp0643-0656.

M. E. Supiyandi, “PENERAPAN TEKNIK PEWARNAAN GRAPH PADA PENJADWALAN UJIAN DENGAN APPLICATION OF GRAPH COLORING TECHNIQUES IN SCHEDULING EXAMS WITH THE WELCH-POWELL ALGORITHM,” J. Ilmu Komput. dan Inform., vol. 03, no. 01, 2018.

Y. Yang, X. Wang, M. Song, J. Yuan, and D. Tao, “SPAGAN: SHORTEST PATH GRAPH ATTENTION NETWORK,” arXiv preprint arXiv:2101.03464, 2021.

Z. Song, H. Ma, S. Sun, Y. Xin, and R. Zhang, “RAINBOW: RELIABLE PERSONALLY IDENTIFIABLE INFORMATION RETRIEVAL ACROSS MULTI-CLOUD,” Cybersecurity, vol. 6, no. 1, p. 19, 2023.doi: https://doi.org/10.1186/s42400-023-00146-z

N. I. Yahya, A. Fatmawati, N. Nurwan, and S. K. Nasib, “RAINBOW VERTEX-CONNECTION NUMBER ON COMB PRODUCT OPERATION OF CYCLE GRAPH (C_4) AND COMPLETE BIPARTITE GRAPH (K_(3,N)),” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 17, no. 2, pp. 0673–0684, Jun. 2023, doi: https://doi.org/10.30598/barekengvol17iss2pp0673-0684

R. Diestel, GRAPH THEORY, 4th ed. New York: Springer, 2010.

R. M. Prihandini, R. Adawiyah, A. I. Kristiana, Dafik, A. Fatahillah, and E. R. Albirri, “SOME FAMILIES OF TREE ARE ELEGANT,” Advances in Mathematics: Scientific Journal, vol. 9, no. 12, pp. 10261–10266, 2020, doi: https://doi.org/10.37418/amsj.9.12.18.

Y. Peng, X. Lin, B. Choi, and B. He, “VCOLOR*: A PRACTICAL APPROACH FOR COLORING LARGE GRAPHS,” Front Comput Sci, vol. 15, p., 2021, doi: https://doi.org/10.1007/s11704-020-9205-y.

A. Silva, L. G. A. Rodriguez, and J. F. Filho, “THE IMPROVED COLOURANT ALGORITHM: A HYBRID ALGORITHM FOR SOLVING THE GRAPH COLOURING PROBLEM,” Int. J. Bio Inspired Comput., vol. 16, pp. 1–12, 2020, doi: https://doi.org/10.1504/IJBIC.2020.109000.

L. S. Chandran, D. Rajendraprasad, and M. Tesař, “RAINBOW COLOURING OF SPLIT GRAPHS,” Discrete Appl Math (1979), vol. 216, pp. 98–113, 2017.doi: https://doi.org/10.1016/j.dam.2015.05.021

E. Aigner-Horev and D. Hefetz, “RAINBOW HAMILTON CYCLES IN RANDOMLY COLORED RANDOMLY PERTURBED DENSE GRAPHS,” SIAM J. Discret. Math., vol. 35, pp. 1569–1577, 2020, doi: https://doi.org/10.1137/20M1332992.

K. Reda and D. Szafir, “RAINBOWS REVISITED: MODELING EFFECTIVE COLORMAP DESIGN FOR GRAPHICAL INFERENCE,” IEEE Trans Vis Comput Graph, vol. 27, pp. 1032–1042, 2020, doi: https://doi.org/10.1109/TVCG.2020.3030439.

D. N. S. Simamora and A. N. M. Salman, “THE RAINBOW (VERTEX) CONNECTION NUMBER OF PENCIL GRAPHS,” Procedia Comput Sci, vol. 74, pp. 138–142, 2015, doi: ttps://doi.org/10.1016/j.procs.2015.12.089.

R. Adawiyah, I. Agustin, R. Prihandini, R. Alfarisi, and E. Albirri, “ON THE LOCAL MULTISET DIMENSION OF GRAPH WITH HOMOGENOUS PENDANT EDGES ,” J. Phys. Conf. Ser, vol. 1538, no. 1, p. 012023, 2020.doi: https://doi.org/10.1088/1742-6596/1538/1/012023

R. Srinivasan and M. Vivekanandan, “ON PACKING COLOURING OF TRANSFORMATION OF PATH, CYCLE AND WHEEL GRAPHS,” Indian J Sci Technol, vol. 14, no. 23, pp. 1975–1981, Jun. 2021, doi: https://doi.org/10.17485/IJST/v14i23.606.

M. Krivelevich and R. Yuster, “THE RAINBOW CONNECTION OF A GRAPH IS (AT MOST) RECIPROCAL TO ITS MINIMUM DEGREE,” J Graph Theory, vol. 63, pp. 185–191, Apr. 2009, doi: https://doi.org/10.1002/jgt.20418

X. Li and S. Liu, “TIGHT UPPER BOUND OF THE RAINBOW VERTEX-CONNECTION NUMBER FOR 2-CONNECTED GRAPHS,” Discrete Appl Math (1979), vol. 173, pp. 62–69, 2014.doi: tps://doi.org/10.1016/j.dam.2014.04.002

S. Ismail, I. K. Hasan, T. Sigar, and S. K. Nasib, “RAINBOW CONNECTION NUMBER AND TOTAL RAINBOW CONNECTION NUMBER OF AMALGAMATION RESULTS DIAMOND GRAPH(〖BR〗_4) AND FAN GRAPH(F_3),” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 16, no. 1, pp. 023–030, Mar. 2022, doi: https://doi.org/10.30598/barekengvol16iss1pp023-030.

J. L. Gross, J. Yellen, and M. Anderson, GRAPH THEORY AND ITS APPLICATIONS. USA: CRC Press, 2018.

Published
2025-09-01
How to Cite
[1]
R. Palupi and A. N. M. Salman, “THE RAINBOW VERTEX-CONNECTION NUMBERS OF WHEEL-SHIELD GRAPHS”, BAREKENG: J. Math. & App., vol. 19, no. 4, pp. 2377-2390, Sep. 2025.