MODELLING AND NUMERICAL ANALYSIS FOR CRACK PROPAGATION IN COMBINING CONCRETE WITH 25% FEATHER SHELL POWDER USING FINITE ELEMENT METHOD

Keywords: Concrete, Crack Growth, Crack Propagation, Engineering Field, Feather Shell Powder, Finite Element Method, Linear Triangle Element

Abstract

This study explores the application of the Extended Finite Element Method (XFEM) for modeling fracture behavior, utilizing COMSOL Multiphysics 5.6 to simulate a homogeneous concrete medium without embedded reinforcement. The computational model incorporates key parameters such as stress ratio (Young’s modulus of 137.9 MPa), lateral strain from axial loading (Poisson’s ratio of 0.17), concrete density of 2.4 g/cm³, and a crack growth rate governed by Paris’ law. The simulation results show a maximum stress intensity factor ( ) of 66.2  and a failure point occurring after approximately 22,568 load cycles. A mixture comprising 25% clamshell ash and lime was used as a sustainable cement substitute, achieving a maximum compressive strength of 20.53 MPa—meeting the structural concrete standard. These findings contribute to enhancing predictive fracture models and promoting sustainable material innovation in civil engineering.

Downloads

Download data is not yet available.

References

J. Figueroa, M. Fuentealba, R. Ponce, and M. Zúñiga, “EFFECTS ON THE COMPRESSIVE STRENGTH AND THERMAL CONDUCTIVITY OF MASS CONCRETE BY THE REPLACEMENT OF FINE AGGREGATE BY MUSSEL SHELL PARTICULATE,” IOP Conf. Ser. Earth Environ. Sci., vol. 503, no. 1, p. 012070, May 2020, doi: https://doi.org/10.1088/1755-1315/503/1/012070.

R. Karolina, A. S. Rezeki, Syahrizal, and M. A. P. Handana, “THE EFFECT OF CLAMSHELL ASH SUBSTITUTION TO THE MECHANICAL PROPERTIES OF CONCRETE,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Oct. 2019. doi: https://doi.org/10.1088/1757-899X/648/1/012045.

W. Demin and H. Fukang, “INVESTIGATION FOR PLASTIC DAMAGE CONSTITUTIVE MODELS OF THE CONCRETE MATERIAL,” Procedia Eng., vol. 210, pp. 71–78, 2017, doi: https://doi.org/10.1016/j.proeng.2017.11.050.

D. Wang, Q. Zhao, C. Yang, Y. Chi, W. Qi, and Z. Teng, “STUDY ON FROST RESISTANCE AND VEGETATION PERFORMANCE OF SEASHELL WASTE PERVIOUS CONCRETE IN COLD AREA,” Constr. Build. Mater., vol. 265, p. 120758, Dec. 2020, doi: https://doi.org/10.1016/j.conbuildmat.2020.120758.

S. Liang, Y. Zhu, M. Huang, and Z. Li, “SIMULATION ON CRACK PROPAGATION VS. CRACK-TIP DISLOCATION EMISSION BY XFEM-BASED DDD SCHEME,” Int. J. Plast., vol. 114, no. October 2018, pp. 87–105, 2019, doi: https://doi.org/10.1016/j.ijplas.2018.10.010.

B. Chen, “FINITE ELEMENT STRENGTH REDUCTION ANALYSIS ON SLOPE STABILITY BASED ON ANSYS,” Environ. Earth Sci. Res. J., vol. 4, no. 3, pp. 60–65, Sep. 2017, doi: https://doi.org/10.18280/eesrj.040302.

F. Meray, T. Chaise, A. Gravouil, P. Depouhon, B. Descharrieres, and D. Nélias, “A NOVEL SAM/X-FEM COUPLING APPROACH FOR THE SIMULATION OF 3D FATIGUE CRACK GROWTH UNDER ROLLING CONTACT LOADING,” Finite Elem. Anal. Des., vol. 206, no. April, p. 103752, 2022, doi: https://doi.org/10.1016/j.finel.2022.103752.

W. Liu, Q. Zeng, J. Yao, Z. Liu, T. Li, and X. Yan, “NUMERICAL STUDY OF ELASTO-PLASTIC HYDRAULIC FRACTURE PROPAGATION IN DEEP RESERVOIRS USING A HYBRID EDFM–XFEM METHOD,” Energies, vol. 14, no. 9, p. 2610, May 2021, doi: https://doi.org/10.3390/en14092610.

Y. Zhou et al., “A NUMERICAL METHOD TO CONSIDER THE INTERACTION BETWEEN MULTIPLE FRACTURES IN FROZEN ROCKS BASED ON XFEM,” Comput. Geotech., vol. 169, p. 106240, May 2024, doi: https://doi.org/10.1016/j.compgeo.2024.106240.

A. Bergara, J. I. Dorado, A. Martin-Meizoso, and J. M. Martínez-Esnaola, “FATIGUE CRACK PROPAGATION IN COMPLEX STRESS FIELDS: EXPERIMENTS AND NUMERICAL SIMULATIONS USING THE EXTENDED FINITE ELEMENT METHOD (XFEM),” Int. J. Fatigue, vol. 103, pp. 112–121, 2017, doi: https://doi.org/10.1016/j.ijfatigue.2017.05.026.

A. Fatahillah, A. D. Pratiwi, S. Setiawani, A. I. Kristiana, and R. Adawiyah, “NUMERICAL ANALYSIS IN ARTERIAL STENOSIS AFFECTED BY ISCHEMIC HEART DISEASE USING FINITE VOLUME METHOD,” BAREKENG J. Ilmu Mat. dan Terap., vol. 18, no. 1, pp. 0179–0192, Mar. 2024, doi: https://doi.org/10.30598/barekengvol18iss1pp0179-0192.

I. S. Parvathi, M. Mahesh, and D. V. V. R. Kamal, “XFEM METHOD FOR CRACK PROPAGATION IN CONCRETE GRAVITY DAMS,” J. Inst. Eng. Ser. A, vol. 103, no. 2, pp. 677–687, Jun. 2022, doi: https://doi.org/10.1007/s40030-022-00636-2.

M. R. Purba, T. Tulus, M. R. Syahputra, and S. Sawaluddin, “IMPLEMENTATION OF EXTENDED FINITE ELEMENT METHOD IN CRACK PROPAGATION OF CONCRETE,” J. Fundam. Math. Appl., vol. 5, no. 1, pp. 1–8, Jul. 2022, doi: https://doi.org/10.14710/jfma.v5i1.14454.

K. Tazoe, H. Tanaka, M. Oka, and G. Yagawa, “AN APPROACH FOR FATIGUE CRACK PROPAGATION ANALYSIS BY SMOOTHED PARTICLE HYDRODYNAMICS METHOD,” Strength, Fract. Complex., vol. 12, no. 2–4, pp. 127–133, Mar. 2020, doi: https://doi.org/10.3233/SFC-190242.

A. M. Singh and M. M. Sharma, “ANALYSIS ON FATIGUE CRACK INITIATION AND FATIGUE CRACK PROPAGATION IN A GEAR,” Smart Moves J. Ijoscience, vol. 4, no. 7, p. 13, 2018, doi: https://doi.org/10.24113/ijoscience.v4i7.155.

A. Jafari, P. Broumand, M. Vahab, and N. Khalili, “AN EXTENDED FINITE ELEMENT METHOD IMPLEMENTATION IN COMSOL MULTIPHYSICS: SOLID MECHANICS,” Finite Elem. Anal. Des., vol. 202, 2022, doi: https://doi.org/10.1016/j.finel.2021.103707.

S. Sugito, S. W. Alisjahbana, and H. Riyanto, “MODELING OF MECHANICAL PERFORMANCE FROM CONCRETE MADE BY COMBINING IRON SAND AND GLASS POWDER FILLER UNDER HOT WATER CURING CONDITION,” Math. Model. Eng. Probl., vol. 9, no. 2, pp. 418–424, Apr. 2022, doi: https://doi.org/10.18280/mmep.090216.

O. N. Stepanova, L., & Belova, “ESTIMATION OF CRACK PROPAGATION DIRECTION ANGLES UNDER MIXED MODE LOADING IN LINEAR ELASTIC ISOTROPIC MATERIALS BY GENERALIZED FRACTURE MECHANICS CRITERIA AND BY MOLECULAR DYNAMICS METHOD ESTIMATION OF CRACK PROPAGATION DIRECTION ANGLES UNDER MIXED MODE l,” J. Phys. Conf. Ser., vol. 1096, p. 012060, 2018, doi: https://doi.org/10.1088/1742-6596/1096/1/012060.

Y. Zhang, Z. Gao, Y. Li, and X. Zhuang, “ON THE CRACK OPENING AND ENERGY DISSIPATION IN A CONTINUUM BASED DISCONNECTED CRACK MODEL,” Finite Elem. Anal. Des., vol. 170, no. June 2019, p. 103333, 2020, doi: https://doi.org/10.1016/j.finel.2019.103333.

X. Q. Nguyen, T. T. Banh, and D. Lee, “A CONSTANT STRAIN TRIANGLE ELEMENT ORIENTED MULTI-MATERIAL TOPOLOGY OPTIMIZATION WITH A MOVED AND REGULARIZED HEAVISIDE FUNCTION,” Struct. Eng. Mech., vol. 79, no. 01, pp. 97–107, 2021, doi: https://doi.org/10.12989/sem.2021.79.1.097.

Published
2025-09-01
How to Cite
[1]
M. D. Nasution, M. R. Syahputra, and I. H. Rambe, “MODELLING AND NUMERICAL ANALYSIS FOR CRACK PROPAGATION IN COMBINING CONCRETE WITH 25% FEATHER SHELL POWDER USING FINITE ELEMENT METHOD”, BAREKENG: J. Math. & App., vol. 19, no. 4, pp. 2419-2430, Sep. 2025.