USING A MONOTONE SEQUENCE OF FUNCTIONS TO DETERMINE THE SHORTEST ARC LENGTH OF CIRCLES CONNECTED ANY TWO POINTS ON SPHERE

  • Muhammad Kabil Djafar Mathematical Department, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Indonesia https://orcid.org/0009-0006-6872-8737
  • La Ode Safiuddin Department of Physical Education, Faculty of Teaching and Educational Science, Universitas Halu Oleo, Indonesia https://orcid.org/0000-0003-2321-5680
  • Lilis Laome Mathematical Department, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Indonesia https://orcid.org/0000-0001-8433-1621
  • Norma Muhtar Mathematical Department, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Indonesia https://orcid.org/0009-0008-8275-6261
  • Herdi Budiman Mathematical Department, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Indonesia https://orcid.org/0000-0003-0777-6453
  • Edi Cahyono Mathematical Department, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Indonesia https://orcid.org/0000-0001-9109-8688
  • La. Gubu Mathematical Department, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Indonesia https://orcid.org/0000-0003-0726-4845
  • Alfian Alfian Mathematical Department, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Indonesia https://orcid.org/0009-0009-6571-6281
  • Indra Alamsyah Mathematical Department, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Indonesia https://orcid.org/0009-0003-6865-1176
  • Askar Kohalsum Mathematical Department, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Indonesia https://orcid.org/0009-0003-0938-475X
Keywords: Arc length, Bounded Sequence, Increasing Function, Monotone Sequence

Abstract

This paper discusses about arc length of circles that connected any two points on a sphere. On a sphere, there are infinitely many circles that connect any two points. Using a monotone sequence of functions, we can show that the shortest arc length of circle that connect any two points on sphere is the circle with its center at the origin.

Downloads

Download data is not yet available.

References

H. Gunawan, PENGANTAR ANALISIS REAL, Third Edit. ITB Press, 2016.

R. G. Bartle and D. R. Sherbert, INTRODUCTION TO REAL ANALYSIS, Fourt Edition. John Wiley & Sons, Inc., 2011.

E. Kreyiszig, INTRODUCTORY FUNCTIONAL ANALYSIS WITH APPLICATIONS, 1978.

S. G. Krantz, REAL ANALYSIS AND FOUNDATIONS. 2022.

W. Somayasa, “ON WEAK CONVERGENCE OF THE PARTIAL SUMS PROCESSES OF THE LEAST SQUARES RESIDUALS OF MULTIVARIATE SPATIAL REGRESION,” J. Indones. Math. Soc, vol. 20, no. 2, pp. 77–94, 2014.doi: https://doi.org/10.22342/jims.20.2.183.77-94

S. Konca and M. Kucukaslan, “ON ASYMPTOTICALLY F-STATISTICAL EQUIVALENT SEQUENCES,” 2018.doi: https://doi.org/10.22342/jims.24.2.531.54-61

V. A. Khan, H. Altaf, and M. Alam, “IDEAL CONVERGENT SEQUENCES OF FUNCTIONS IN PROBABILISTIC NORMED SPACES,” J. Math. Comput. Sci., vol. 26, no. 3, pp. 249–254, 2021, doi: https://doi.org/10.22436/jmcs.026.03.04.

A. Esi and N.Subramanian, “GENERALIZED ROUGH CESARO AND LACUNARY STATISTICAL TRIPLE DIFFERENCE SEQUENCE SPACES IN PROBABILITY OF FRACTIONAL ORDER DEFINED BY MUSIELAK-ORLICZ FUNCTION,” Int. J. Anal. Appl., vol. 16, no. 1, pp. 16–24, 2018, doi: https://doi.org/10.28924/2291-8639-16-2018-16.

J. M. Tuwankotta, “TWO ASPECS OF A GENERALIZED FIBONACCI SEQUENCE,” J. Indones. Math. Soc, vol. 21, no. 1, pp. 1–17, 2015.doi: https://doi.org/10.22342/jims.21.1.173.1-17

Ö. Özer, “FIBONACCI SEQUENCE AND CONTINUED FRACTION EXPANSIONS IN REAL QUADRATIC NUMBER FIELDS,” Malaysian J. Math. Sci., vol. 11, no. 1, pp. 11–27, 2017, [Online]. Available: http://einspem.upm.edu.my/journal

C. Kustiawan, A. A. Masta, D. Dasep, E. Sumiaty, S. Fatimah, and S. Al Hazmy, “GENERALIZED ORLICZ SEQUENCE SPACES,” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 1, pp. 0427–0438, Apr. 2023, doi: https://doi.org/10.30598/barekengvol17iss1pp0427-0438.

T. Jalal, “ON SOME NEW GENERALIZED DIFFERENCE SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION,” 2015.doi: https://doi.org/10.22436/jmcs.015.01.07

A. Shoaib, A. Azam, M. Arshad, and E. Ameer, “FIXED POINT RESULTS FOR MULTIVALUED MAPPINGS ON A SEQUENCE IN A CLOSED BALL WITH APPLICATIONS,” J. Math. Comput. Sci., vol. 17, no. 02, pp. 308–316, Apr. 2017, doi: https://doi.org/10.22436/jmcs.017.02.13.

V. A. Khan, K. M. A. S. Alshlool, and M. Alam, “ON HILBERT I-CONVERGENT SEQUENCE SPACES,” J. Math. Comput. Sci., vol. 20, no. 3, pp. 225–233, 2019, doi: https://doi.org/10.22436/jmcs.020.03.05.

Y. Zhao, R. Li, H. Wang, and H. Liang, “DISTRIBUTIONAL CHAOS IN A SEQUENCE AND TOPOLOGICALLY WEAK MIXING FOR NONAUTONOMOUS DISCRETE DYNAMICAL SYSTEMS,” J. Math. Comput. Sci., vol. 20, no. 1, pp. 14–20, 2020, doi: https://doi.org/10.22436/jmcs.020.01.02.

O. K. S. K. Mohamed, A. O. Mustafa, and A. A. Bakery, “DECISION-MAKING ON THE SOLUTION OF NON-LINEAR DYNAMICAL SYSTEMS OF KANNAN NON-EXPANSIVE TYPE IN NAKANO SEQUENCE SPACE OF FUZZY NUMBERS,” J. Math. Comput. Sci., vol. 31, no. 2, pp. 162–187, 2023, doi: https://doi.org/10.22436/jmcs.031.02.04.

U. A. Mu’min, B. P. Silalahi, and S. Guritman, “SOME CONSTRUCTION OF 8N-DIMENSIONAL PERFECT MAGIC CUBE WITH ARITHMETIC SEQUENCE,” BAREKENG J. Ilmu Mat. dan Terap., vol. 18, no. 1, pp. 0565–0578, 2024, doi: https://doi.org/10.30598/barekengvol18iss1pp0565-0578.

M. Kiftiah, Yundari, Suryani, and N. Lauren, “A COMPLETION THEOREM FOR COMPLEX VALUED S-METRIC SPACE,” BAREKENG J. Ilmu Mat. dan Terap., vol. 18, no. 4, pp. 2747–2756, 2024.doi: https://doi.org/10.30598/barekengvol18iss4pp2747-2756

D. Hafifullah, F. Fitriani, and A. Faisol, “THE PROPERTIES OF ROUGH V-COEXACT SEQUENCE IN ROUGH GROUP,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 3, pp. 1069–1078, 2022, doi: https://doi.org/10.30598/barekengvol16iss3pp1069-1078.

M. K. Djafar et al., “DETERMINING THE SHORTEST ARC LENGTH OF CIRCLES CONNECTED ANY TWO PLACES ON THE EARTH USING MONOTONICITY OF DIFFERENTIABLE FUNCTION,” in AIP Conference Proceedings, American Institute of Physics Inc., May 2023. doi: https://doi.org/10.1063/5.0138527.

Published
2025-07-01
How to Cite
[1]
M. K. Djafar, “USING A MONOTONE SEQUENCE OF FUNCTIONS TO DETERMINE THE SHORTEST ARC LENGTH OF CIRCLES CONNECTED ANY TWO POINTS ON SPHERE”, BAREKENG: J. Math. & App., vol. 19, no. 3, pp. 1923-1932, Jul. 2025.