MODEL APPROACH OF AGGREGATE RETURN VOLATILITY: GARCH(1,1)-COPULA VS GARCH(1,1)-BIVARIATE NORMAL

  • Asysta Amalia Pasaribu Statistics and Data Science Department, School of Data Science, Mathematics and Informatics, IPB University, Indonesia https://orcid.org/0000-0003-0753-5772
  • Anang Kurnia Statistics and Data Science Department, School of Data Science, Mathematics and Informatics, IPB University, Indonesia https://orcid.org/0000-0001-9409-2361
Keywords: Dependences, GARCH-Copula, GARCH-Bivariate Normal, Risk Aggregate, Volatility

Abstract

Aggregate risk is an aggregation of single risks that are both independent and interdependent. In this study, aggregate risk is constructed from two interdependent random risk variables. The dependence between two random variables can be determined through the size of dependence and joint distribution properties. However, not all distributions have joint distribution properties; the joint distributions may be unknown, so motivating the use of the Copulas in this study is needed. Sometimes, the Copula model is introduced to construct joint distribution properties. The Copula model in this research is used in financial policies such as investment. In the investment sector, the aggregate risk comes from the sum of the single risks and returns. The model used in aggregate return is the Generalized Autoregressive Conditionally Heteroscedastic (GARCH) model. The data used in this study is the closing price data for Apple and Microsoft stocks from January 01, 2010, to January 01, 2024. The best model selection is the model with the GARCH-Bivariate Normal approach with the smallest MSE value. Model GARCH(1,1)-Bivariate Normal is the best model for the volatility model of aggregate return.

Downloads

Download data is not yet available.

References

A. Afriyeni and D. Marlius, “ANALISIS TINGKAT PENGEMBALIAN DAN RISIKO INVESTASI (STUDI PADA INDUSTRI MANUFAKTUR YANG TERDAFTAR DI BURSA EFEK INDONESIA),” 2019.doi: https://doi.org/10.31219/osf.io/cfb92

D. B. Nugroho, D. Kurniawati, L. Panjaitan, Z. Kholil, B. Susanto, and L. Sasongko, “EMPIRICAL PERFORMANCE OF GARCH, GARCH-M, GJR-GARCH AND LOG-GARCH MODELS FOR RETURNS VOLATILITY,” presented at the Journal of Physics: Conference Series, IOP Publishing, 2019, p. 012003.doi: https://doi.org/10.1088/1742-6596/1307/1/012003

E. M. Kimani, A. Ngunyi, and J. K. Mungatu, “MODELLING DEPENDENCE OF CRYPTOCURRENCIES USING COPULA GARCH,” J. Math. Finance, vol. 13, no. 3, pp. 321–338, 2023.doi: https://doi.org/10.4236/jmf.2023.133020

S. Rastogi and J. Kanoujiya, “IMPACT OF CRYPTOS ON THE INFLATION VOLATILITY IN INDIA: AN APPLICATION OF BIVARIATE BEKK-GARCH MODELS,” J. Econ. Adm. Sci., vol. 40, no. 2, pp. 221–237, 2024.doi: https://doi.org/10.1108/JEAS-08-2021-0167

S. Sharma, V. Aggarwal, and M. P. Yadav, “COMPARISON OF LINEAR AND NON-LINEAR GARCH MODELS FOR FORECASTING VOLATILITY OF SELECT EMERGING COUNTRIES,” J. Adv. Manag. Res., vol. 18, no. 4, pp. 526–547, 2021.doi: https://doi.org/10.1108/JAMR-07-2020-0152

Y. Fang, Y. Fan, M. Haroon, and A. Dilanchiev, “EXPLORING THE RELATIONSHIP BETWEEN GLOBAL ECONOMIC POLICY AND VOLATILITY OF CRUDE FUTURES: A TWO-FACTOR GARCH-MIDAS ANALYSIS,” Resour. Policy, vol. 85, p. 103766, 2023.doi: https://doi.org/10.1016/j.resourpol.2023.103766

L. Deng, C. Ma, and W. Yang, “PORTFOLIO OPTIMIZATION VIA PAIR COPULA-GARCH-EVT-CVAR MODEL,” Syst. Eng. Procedia, vol. 2, pp. 171–181, 2011.doi: https://doi.org/10.1016/j.sepro.2011.10.020

X. Sun, C. Liu, J. Wang, and J. Li, “ASSESSING THE EXTREME RISK SPILLOVERS OF INTERNATIONAL COMMODITIES ON MARITIME MARKETS: A GARCH-COPULA-COVAR APPROACH,” Int. Rev. Financ. Anal., vol. 68, p. 101453, 2020.doi: https://doi.org/10.1016/j.irfa.2020.101453

R. Ab Razak and N. Ismail, “DEPENDENCE MODELING AND PORTFOLIO RISK ESTIMATION USING GARCH-COPULA APPROACH,” Sains Malays., vol. 48, no. 7, pp. 1547–1555, 2019.doi: https://doi.org/10.17576/jsm-2019-4807-24

X. W. Yeap, H. H. Lean, M. G. Sampid, and H. Mohamad Hasim, “THE DEPENDENCE STRUCTURE AND PORTFOLIO RISK OF MALAYSIA’S FOREIGN EXCHANGE RATES: THE BAYESIAN GARCH–EVT–COPULA MODEL,” Int. J. Emerg. Mark., vol. 16, no. 5, pp. 952–974, 2021.doi: https://doi.org/10.1108/IJOEM-02-2020-0169

B. Rašiová and P. Árendáš, “COPULA APPROACH TO MARKET VOLATILITY AND TECHNOLOGY STOCKS DEPENDENCE,” Finance Res. Lett., vol. 52, p. 103553, 2023.doi: https://doi.org/10.1016/j.frl.2022.103553

J. Salma, “CRUDE OIL PRICE UNCERTAINTY AND STOCK MARKETS IN GULF CORPORATION COUNTRIES: A VAR-GARCH COPULA MODEL,” Glob. J. Manag. Bus. Res., vol. 15, no. 10, pp. 29–38, 2015.

N. T. Hung, “CONDITIONAL DEPENDENCE BETWEEN OIL PRICES AND CEE STOCK MARKETS: A COPULA-GARCH APPROACH,” East. J. Eur. Stud., vol. 11, no. 1, pp. 62–86, 2020.

S. E. Saleh, D. Pakaya, I. K. Hasan, and I. Djakaria, “APPLICATION OF THE COPULA METHOD TO ANALYZE THE RELATIONSHIPS OF MACROECONOMIC FACTORS AFFECTING THE CSPI,” BAREKENG J. Ilmu Mat. Dan Terap., vol. 17, no. 2, pp. 0903–0912, 2023.doi: https://doi.org/10.30598/barekengvol17iss2pp0903-0912

T. Ardhitha, E. Sulistianingsih, and N. Satyahadewi, “VALUE AT RISK ANALYSIS ON BLUE CHIP STOCKS PORTFOLIO WITH GAUSSIAN COPULA,” BAREKENG J. Ilmu Mat. Dan Terap., vol. 17, no. 3, pp. 1739–1748, 2023.doi: https://doi.org/10.30598/barekengvol17iss3pp1739-1748

R. B. Nelsen, “COPULAS AND QUASI-COPULAS: AN INTRODUCTION TO THEIR PROPERTIES AND APPLICATIONS,” in Logical, algebraic, analytic and probabilistic aspects of triangular norms, Elsevier, 2005, pp. 391–413.doi: https://doi.org/10.1016/B978-044451814-9/50014-8

S. Rahmah, R. Budiarti, and I. G. P. Purnaba, “ANALYSIS OF THE DEPENDENCIES COMMODITY PRICES AND STOCK MARKET INDEXES,” BAREKENG J. Ilmu Mat. Dan Terap., vol. 18, no. 3, pp. 1563–1572, 2024.doi: https://doi.org/10.30598/barekengvol18iss3pp1563-1572

J. S. Seleky, “KAJIAN SIFAT EKOR TEBAL DISTRIBUSI MODE-CENTERED BURR,” AKSIOMA J. Mat. Dan Pendidik. Mat., vol. 13, no. 3, pp. 436–447, 2022.doi: https://doi.org/10.26877/aks.v13i3.14170

B. Rikumahu, “PEMODELAN DISTRIBUSI TINGKAT IMBAL HASIL INDEKS HARGA DI TUJUH BURSA ASIA,” J. Manaj. Indones., vol. 14, no. 1, pp. 1–15, 2014.doi: https://doi.org/10.25124/jmi.v14i1.348

J. Devitra, “KINERJA KEUANGAN DAN EFISIENSI TERHADAP RETURN SAHAM PERBANKAN DI BURSA EFEK INDONESIA PERIODE 2007-2011,” J. Keuang. Dan Perbank., vol. 15, no. 1, 2013.

Published
2025-07-01
How to Cite
[1]
A. A. Pasaribu and A. Kurnia, “MODEL APPROACH OF AGGREGATE RETURN VOLATILITY: GARCH(1,1)-COPULA VS GARCH(1,1)-BIVARIATE NORMAL”, BAREKENG: J. Math. & App., vol. 19, no. 3, pp. 2069-2082, Jul. 2025.