APPLICATION OF GPU-CUDA PARALLEL COMPUTING TO THE SMITH-WATERMAN ALGORITHM TO DETECT MUSIC PLAGIARISM

  • Alfredo Gormantara Informatics Engineering Study Program, Department of Information Technology, Universitas Atma Jaya Makassar, Indonesia
  • Ferdianto Tangdililing Electrical Engineering Study Program, Department of Engineering, Universitas Atma Jaya Makassar, Indonesia
  • Sean Coonery Sumarta Informatics Engineering Study Program, Department of Information Technology, Universitas Atma Jaya Makassar, Indonesia
Keywords: GPU-CUDA, Music Plagiarism, Parallel Computing, Smith-Waterman

Abstract

This study introduces the Smith-Waterman algorithm because the advantage of this algorithm is that it can determine the similarity from any position that corresponds to music plagiarism, considering that song similarities can occur in any part of a song. Plagiarism detection can be done by comparing the melody notes of 2 songs to determine whether or not there are similarities. Songs that are identified as plagiarism have similar melodies of 8 bars. However, the Smith-Waterman algorithm has a weakness, namely that the speed of this algorithm is relatively slow, so parallel computing is required to speed up the detection process. Parallel computing relies on the capabilities of multi-core GPUs that can be programmed using CUDA. Therefore, the innovation raised in this study is to speed up the computing process in detecting music plagiarism by applying parallel computing to the Smith-Waterman algorithm. The methodology stages begin with melody extraction, namely taking the song melody from the MIDI file along with the melody's tempo in the MIDI file and then transposing it to the basic tone of C. The study's results showed that using the GPU can speed up the execution time by up to 5.7 times compared to using the CPU. In addition, validation was carried out with real music plagiarism cases and validation of the results using the MIPPIA website. This shows that parallel computing has been successfully applied to the Smith-Waterman algorithm in detecting music plagiarism.

Downloads

Download data is not yet available.

References

N. T. S. Saptadi et al., PENGANTAR TEKNOLOGI INFORMASI, vol. 1, no. 1. 2023.

A. Sabiq, H. Yugaswara, and H. Wicaksono, “SISTEM KOMPUTASI PARALEL MENGGUNAKAN GPU BERBASIS NVIDIA CUDA,” ORBITH, vol. 17, no. 2, pp. 158–164, 2021.

S. Zhu et al., “INTELLIGENT COMPUTING: THE LATEST ADVANCES, CHALLENGES, AND FUTURE,” Intell. Comput., vol. 2, 2023, doi: https://doi.org/10.34133/icomputing.0006.

M. Vaithianathan, M. Patil, S. F. Ng, and S. Udkar, “COMPARATIVE STUDY OF FPGA AND GPU FOR HIGH-PERFORMANCE COMPUTING AND AI,” Int. J. Adv. Comput. Technol., vol. 1, no. May 2023, pp. 37–46, 2023, doi: 10.56472/25838628/IJACT-V1I1P107.

M. Schubiger, G. Banjac, and J. Lygeros, “GPU ACCELERATION OF ADMM FOR LARGE-SCALE QUADRATIC PROGRAMMING,” J. Parallel Distrib. Comput., vol. 144, pp. 55–67, 2020, doi: https://doi.org/10.1016/j.jpdc.2020.05.021.

M. Aslam, O. Riaz, S. Mumtaz, and A. D. Asif, “PERFORMANCE COMPARISON OF GPU-BASED JACOBI SOLVERS USING CUDA PROVIDED SYNCHRONIZATION METHODS,” IEEE Access, vol. 8, pp. 31792–31812, 2020, doi: https://doi.org/10.1109/ACCESS.2020.2973669.

A. Gormantara and Pranowo, “PARALLEL SIMULATION OF PATTERN FORMATION IN A REACTION-DIFFUSION SYSTEM OF FITZHUGH-NAGUMO USING GPU CUDA,” AIP Conf. Proc., vol. 2217, no. April, 2020, doi: https://doi.org/10.1063/5.0000667.

A. Asaduzzaman, A. Trent, S. Osborne, C. Aldershof, and F. N. Sibai, “IMPACT OF CUDA AND OPENCL ON PARALLEL AND DISTRIBUTED COMPUTING,” 2021 8th Int. Conf. Electr. Electron. Eng. ICEEE 2021, pp. 238–242, 2021, doi: https://doi.org/10.1109/ICEEE52452.2021.9415927.

P. R. Kommera, S. S. Muknahallipatna, and J. E. McInroy, “OPTIMIZED CUDA IMPLEMENTATION TO IMPROVE THE PERFORMANCE OF BUNDLE ADJUSTMENT ALGORITHM ON GPUs,” J. Softw. Eng. Appl., vol. 17, no. 04, pp. 172–201, 2024, doi: https://doi.org/10.4236/jsea.2024.174010.

M. Afif, Y. Said, and M. Atri, “COMPUTER VISION ALGORITHMS ACCELERATION USING GRAPHIC PROCESSORS NVIDIA CUDA,” Cluster Comput., vol. 23, no. 4, pp. 3335–3347, 2020, doi: https://doi.org/10.1007/s10586-020-03090-6.

K. Kaur, S. Chakraborty, and M. K. Gupta, “ACCELERATING SMITH-WATERMAN ALGORITHM FOR FASTER SEQUENCE ALIGNMENT USING GRAPHICAL PROCESSING UNIT,” in Journal of Physics: Conference Series, 2022, vol. 2161, no. 1, doi: https://doi.org/10.1088/1742-6596/2161/1/012028.

S. Petti et al., “END-TO-END LEARNING OF MULTIPLE SEQUENCE ALIGNMENTS WITH DIFFERENTIABLE SMITH–WATERMAN,” Bioinformatics, vol. 39, no. 1, 2023, doi: https://doi.org/10.1093/bioinformatics/btac724.

L. You et al., “GPU-ACCELERATED FASTER MEAN SHIFT WITH EUCLIDEAN DISTANCE METRICS,” in Proceedings - 2022 IEEE 46th Annual Computers, Software, and Applications Conference, COMPSAC 2022, 2022, pp. 211–216, doi: https://doi.org/10.1109/COMPSAC54236.2022.00037.

A. Gormantara, “Analisis Sentimen Terhadap New Normal Era di Indonesia pada Twitter Analisis Sentimen Terhadap New Normal Era di Indonesia pada Twitter Menggunakan Metode Support Vector Machine,” no. July, pp. 0–5, 2020.

M. N. A. Putera Khano, D. R. S. Saputro, S. Sutanto, and A. Wibowo, “SENTIMENT ANALYSIS WITH LONG-SHORT TERM MEMORY (LSTM) AND GATED RECURRENT UNIT (GRU) ALGORITHMS,” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 4, pp. 2235–2242, 2023, doi: https://doi.org/10.30598/barekengvol17iss4pp2235-2242.

A. A. Nareswari and D. T. Utari, “ADVANCEMENTS IN ALZHEIMER’S DIAGNOSIS THROUGH MRI USING BAYESIAN CONVOLUTIONAL NEURAL NETWORKS AND VARIATIONAL INFERENCE,” BAREKENG J. Ilmu Mat. dan Terap., vol. 18, no. 4, pp. 2423–2434, 2024, doi: https://doi.org/10.30598/barekengvol18iss4pp2423-2434.

R. Hidalgo, A. Devito, N. Salah, A. S. Varde, and R. W. Meredith, “INFERRING PHYLOGENETIC RELATIONSHIPS USING THE SMITH-WATERMAN ALGORITHM AND HIERARCHICAL CLUSTERING,” Proc. - 2022 IEEE Int. Conf. Big Data, Big Data 2022, no. December, pp. 5910–5914, 2022, doi: https://doi.org/10.1109/BigData55660.2022.10020454.

M. Risnasari, M. A. Effindi, P. Dellia, L. Cahyani, N. Aini, and N. Aini, “COMPUTER BASED TEST USING THE FISHER-YATES SHUFFLE AND SMITH WATERMAN ALGORITHM,” KnE Soc. Sci., vol. 2021, pp. 353–360, 2021, doi: https://doi.org/10.18502/kss.v5i6.9224.

B. Sari and Y. Sibaroni, “DETEKSI KEMIRIPAN DOKUMEN BAHASA,” Ind. J. Comput., vol. 4, no. 3, pp. 87–98, 2019, doi: 10.21108/indojc.2019.4.3.365.

F. Alvi, M. Stevenson, and P. Clough, “PARAPHRASE TYPE IDENTIFICATION FOR PLAGIARISM DETECTION USING CONTEXTS AND WORD EMBEDDINGS,” Int. J. Educ. Technol. High. Educ., vol. 18, no. 1, 2021, doi: https://doi.org/10.1186/s41239-021-00277-8.

A. Khozaimi, H. Husni, Y. D. Pramudita, M. F. Adlim, F. H. Rachman, and I. O. Susanti, “CHATBOT CERDAS SEBAGAI HELPDESK OBJEK WISATA MENGGUNAKAN ALGORITMA SMITH-WATERMAN,” J. Teknol. Inf. dan Terap., vol. 10, no. 1, pp. 36–46, 2023, doi: https://doi.org/10.25047/jtit.v10i1.312.

J. Zhao, D. Taniar, K. Adhinugraha, V. M. Baskaran, and K. S. Wong, “MULTI-MMLG: A NOVEL FRAMEWORK OF EXTRACTING MULTIPLE MAIN MELODIES FROM MIDI FILES,” Neural Comput. Appl., vol. 35, no. 30, pp. 22687–22704, 2023, doi: https://doi.org/10.1007/s00521-023-08924-z.

R. Kubik et al., “DEVELOPMENT OF AN INTELLIGENT SYSTEM FOR SELECTING SONGS ACCORDING TO THE USER NEEDS,” CEUR Workshop Proc., vol. 2604, pp. 1251–1279, 2020.

J. N. Muhammad Irfan Reza Mahendra, “PERLINDUNGAN HUKUM PREVENTIF DAN REPRESIF TERHADAP PERBUATAN PLAGIARISME CIPTAAN LAGU ATAU MUSIK,” Nusant. J. Ilmu Pengetah. Sos., vol. 9, no. 4, pp. 1483–1490, 2022.

Z. Yin, F. Reuben, S. Stepney, and T. Collins, “‘A GOOD ALGORITHM DOES NOT STEAL – IT IMITATES’: THE ORIGINALITY REPORT AS A MEANS OF MEASURING WHEN A MUSIC GENERATION ALGORITHM COPIES TOO MUCH,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2021, vol. 12693 LNCS, pp. 360–375, doi: https://doi.org/10.1007/978-3-030-72914-1_24.

A. D. Ongriwalu and Y. Yunanto, “KARYA CIPTA LAGU DAN MUSIK DALAM BINGKAI ASAS PERLINDUNGAN HUKUM,” AL-MANHAJ J. Huk. dan Pranata Sos. Islam, vol. 5, no. 2, pp. 1369–1374, 2023, doi: https://doi.org/10.37680/almanhaj.v5i2.2781.

H. El Haji and L. Alaoui, “A CATEGORIZATION OF RELEVANT SEQUENCE ALIGNMENT ALGORITHMS WITH RESPECT TO DATA STRUCTURES,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 6, pp. 268–273, 2020, doi: https://doi.org/10.14569/IJACSA.2020.0110635.

A. Widjaja, T. K. Gautama, S. F. Sujadi, and S. R. Harnandy, “HIGH PERFORMANCE COMPUTING ENVIRONMENT USING GENERAL PURPOSE COMPUTATIONS ON GRAPHICS PROCESSING UNIT,” J. Tek. Inform. dan Sist. Inf., vol. 7, no. 2, 2021, doi: https://doi.org/10.28932/jutisi.v7i2.3715.

K. Kaur, S. Chakraborty, and M. K. Gupta, “ACCELERATING SMITH-WATERMAN ALGORITHM FOR FASTER SEQUENCE ALIGNMENT USING GRAPHICAL PROCESSING UNIT,” J. Phys. Conf. Ser., vol. 2161, no. 1, 2022, doi: https://doi.org/10.1088/1742-6596/2161/1/012028.

B. Schmidt, F. Kallenborn, A. Chacon, and C. Hundt, “CUDASW ++ 4 . 0 : ULTRA ‑ FAST GPU ‑ BASED SMITH – WATERMAN PROTEIN SEQUENCE DATABASE SEARCH,” BMC Bioinformatics, 2024, doi: https://doi.org/10.1101/2023.10.09.561526.

Z. Xia et al., “A REVIEW OF PARALLEL IMPLEMENTATIONS FOR THE SMITH – WATERMAN ALGORITHM,” Interdiscip. Sci. Comput. Life Sci., vol. 14, no. 1, pp. 1–14, 2022, doi: https://doi.org/10.1007/s12539-021-00473-0.

V. Krishnakumar, “DETECTION OF SIMILAR MELODIES BY REPURPOSING ALGORITHMS FOR SEQUENCE ALIGNMENT AND STRING SEARCHING VIHAAN KRISHNAKUMAR,” Res. Arch. Rising Sch., pp. 1–7, 2023, doi: https://doi.org/10.58445/rars.814.

Published
2025-07-01
How to Cite
[1]
A. Gormantara, F. Tangdililing, and S. C. Sumarta, “APPLICATION OF GPU-CUDA PARALLEL COMPUTING TO THE SMITH-WATERMAN ALGORITHM TO DETECT MUSIC PLAGIARISM”, BAREKENG: J. Math. & App., vol. 19, no. 3, pp. 1725-1736, Jul. 2025.