THE TRIPLE IDENTITY GRAPH OF THE RING Z_n

  • Vika Yugi Kurniawan Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia https://orcid.org/0000-0001-8475-7243
  • Chessa Fanny Ekasiwi Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia https://orcid.org/0009-0008-3328-7817
  • Santoso Budi Wiyono Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia https://orcid.org/0000-0002-2377-1890
Keywords: Algebraic Graph, Diameter, Girth, Hamiltonian Graph, Identity Element

Abstract

Let  be a commutative ring with identity and  is an identity element of . The triple identity graph of the ring , represented by ), is an undirected simple graph with the vertex set . In , two different vertices  and  is called adjacent if there is an element such that and . The triple identity graph of the ring of integers modulo , represented by , is the subject of this study. We obtain several results regarding the properties of the graph , which are summarized as follows. The graph  is a connected graph if and only if  is prime and . If  is connected, then diam and gr. Furthermore,  is a Hamiltonian graph if  is a prime number and .

Downloads

Download data is not yet available.

References

I. Beck, “COLORING OF COMMUTATIVE RINGS,” J. Algebr., vol. 116, no. 1, pp. 208–226, 1988, doi: https://doi.org/10.1016/0021-8693(88)90202-5.

D. F. Anderson and P. S. Livingston, “THE ZERO-DIVISOR GRAPH OF A COMMUTATIVE RING,” J. Algebr., vol. 217, no. 2, pp. 434–447, 1999, doi: https://doi.org/10.1006/jabr.1998.7840.

D. Sinha and B. Kaur, “ON BECK’S ZERO-DIVISOR GRAPH,” Notes Number Theory Discret. Math., vol. 25, no. 4, pp. 150–157, 2019, doi: https://doi.org/10.7546/nntdm.2019.25.4.150-157.

R. Akhtar and L. Lee, “CONNECTIVITY OF THE ZERO-DIVISOR GRAPH FOR FINITE RINGS,” Involv. (Journal Math. ), vol. 9, no. 3, pp. 415–422, 2016.doi: https://doi.org/10.2140/involve.2016.9.415

M. Bakhtyiari, R. Nikandish, and M. J. Nikmehr, “COLORING OF COZERO-DIVISOR GRAPHS OF COMMUTATIVE VON NEUMANN REGULAR RINGS,” Proc. Indian Acad. Sci. Math. Sci., vol. 130, no. 1, pp. 1–9, 2020, doi: https://doi.org/10.1007/s12044-020-00569-5.

A. M. Dhorajia, “SOME GRAPH ON PRIME IDEALS OF A COMMUTATIVE RING,” Int. Electron. J. Algebr., vol. 23, pp. 157–166, 2018, doi: https://doi.org/10.24330/ieja.373659.

A. M. Alanazi, M. Nazim, and N. Ur Rehman, “PLANAR, OUTERPLANAR, AND TOROIDAL GRAPHS OF THE GENERALIZED ZERO-DIVISOR GRAPH OF COMMUTATIVE RINGS,” J. Math., vol. 2021, 2021, doi: https://doi.org/10.1155/2021/4828579.

B. S. Reddy, R. S. Jain, and N. Laxmikanth, “VERTEX AND EDGE CONNECTIVITY OF THE ZERO DIVISOR GRAPH Γ(Zn),” pp. 1–7, 2018, [Online]. Available: http://arxiv.org/abs/1807.02703

P. Potoˇ, “GIRTH-REGULAR GRAPHS ∗,” vol. 3966, pp. 349–368, 2019.doi: https://doi.org/10.26493/1855-3974.1684.b0d

C. Balbuena, P. Garca-Vzquez, and L. P. Montejano, “SUPERCONNECTIVITY OF GRAPHS WITH ODD GIRTH G AND EVEN GIRTH H,” Discret. Appl. Math., vol. 159, no. 2–3, pp. 91–99, 2011, doi: https://doi.org/10.1016/j.dam.2010.10.003.

K. Samei, “ON THE COMAXIMAL GRAPH OF A RING,” AKCE Int. J. Graphs Comb., vol. 57, no. 2, pp. 413–423, 2014, doi: https://doi.org/10.4153/CMB-2013-033-7.

M. Miller, “MOORE GRAPHS AND BEYOND: A SURVEY OF THE DEGREE/DIAMETER PROBLEM,” Electron. J. Comb., vol. 1, no. DynamicSurveys, 2018.

H. Wang, J.-B. Liu, S. Wang, W. Gao, and S. Akhter, “SHARP BOUNDS FOR THE GENERAL SUM‐CONNECTIVITY INDICES OF TRANSFORMATION GRAPHS,” 2017, Hindawi. doi: https://doi.org/10.1155/2017/2941615.

G. Aalipour and S. Akbari, “ON THE CAYLEY GRAPH OF A COMMUTATIVE RING WITH RESPECT TO ITS ZERO-DIVISORS,” Commun. Algebr., vol. 44, no. 4, pp. 1443–1459, 2016, doi: https://doi.org/10.1080/00927872.2015.1027359.

A. Sharma and D. K. Basnet, “NIL CLEAN DIVISOR GRAPH,” pp. 1–9, 2019, [Online]. Available: http://arxiv.org/abs/1903.02287

K. Toker, “Zero-Divisor Graphs Of Catalan Monoid,” Hacettepe J. Math. Stat., vol. 50, no. 2, pp. 387–396, 2021, doi: https://doi.org/10.15672/hujms.702478.

E. Y. Çelikel, “THE TRIPLE ZERO GRAPH OF A COMMUTATIVE RING,” Commun. Fac. Sci. Univ. Ankara Ser. A1 Math. Stat., vol. 70, no. 2, pp. 653–663, 2021, doi: https://doi.org/10.31801/cfsuasmas.786804.

T. Hartati and V. Y. Kurniawan, “CONSTRUCT THE TRIPLE NILPOTENT GRAPH OF RING USING PYTHON,” AIP Conf. Proc., vol. 2886, no. 1, 2023, doi: https://doi.org/10.1063/5.0154928.

I. N. Fitriani and V. Y. Kurniawan, “ALGORITHM FOR CONSTRUCTING THE TRIPLE UNIT GRAPH OF TYPE II OF RING Z_n USING PYTHON,” BAREKENG J. Ilmu Mat. dan Terap., vol. 18, no. 3, pp. 1639–1648, 2024, doi: https://doi.org/10.30598/barekengvol18iss3pp1639-1648.

S. Akbari, M. Habibi, A. Majidinya, and R. Manaviyat, “ON THE IDEMPOTENT GRAPH OF A RING,” J. Algebr. its Appl., vol. 12, no. 6, 2013, doi: https://doi.org/10.1142/S0219498813500035.

E. S. Cahyati, R. M. I. Maharani, S. Nurhayati, and Y. Susanti, “GENERALIZED NON-BRAID GRAPHS OF RINGS,” J. Fundam. Math. Appl., vol. 5, no. 2, pp. 192–201, 2022, doi: https://doi.org/10.14710/jfma.v5i2.14152

A. Patil and P. S. Momale, “IDEMPOTENT GRAPHS, WEAK PERFECTNESS, AND ZERO-DIVISOR GRAPHS,” Soft Comput., vol. 25, no. 15, pp. 10083–10088, 2021, doi: https://doi.org/10.1007/s00500-021-05982-0.

S. Razaghi and S. Sahebi, “A GRAPH WITH RESPECT TO IDEMPOTENTS OF A RING,” J. Algebr. its Appl., vol. 20, no. 6, 2021, doi: https://doi.org/10.1142/S021949882150105X.

V. Y. Kurniawan, B. Purboutomo, and N. A. Kurdhi, “CONNECTIVITY OF THE TRIPLE IDEMPOTENT GRAPH OF RING Zn,” Int. J. Comput. Sci. Appl. Math., vol. 10, no. 1, pp. 34–37, 2024, doi: https://doi.org/10.12962/j24775401.v10i1.20266.

V. Y. Kurniawan and C. F. Ekasiwi, “ALGORITHM FOR CONSTRUCTING TRIPLE IDENTITY GRAPH OF RING Z_n USING PYTHON,” BAREKENG J. Ilmu Mat. dan Terap., vol. 18, no. 3, pp. 1629–1638, 2024, doi: https://doi.org/10.30598/barekengvol18iss3pp1629-1638.

G. Chartrand, L. Lesniak, and P. Zhang, GRAPHS & DIGRAPHS, 6th ed. New York: CRC Pers Taylor and Francis Group, 2016. doi: https://doi.org/10.1201/b19731.

Published
2025-09-01
How to Cite
[1]
V. Y. Kurniawan, C. F. Ekasiwi, and S. B. Wiyono, “THE TRIPLE IDENTITY GRAPH OF THE RING Z_n”, BAREKENG: J. Math. & App., vol. 19, no. 4, pp. 2521-2530, Sep. 2025.