THE SHOELACE ALGORITHM IN ENGINEERING: PYTHON APPLICATIONS FOR AREA AND INERTIAL ANALYSIS

Keywords: Computational Geometry, Engineering Analysis, Geometric Properties, Python Programming, Shoelace Method

Abstract

The Shoelace Method is a classic mathematical formula for the determination of the area of polygons. This method is based on the vertex coordinates of a polygon and has significant applications in science and engineering. This article explores the method's extension to calculate the centroids and moments of inertia of plane shapes, which is essential for structural and mechanical analysis. By executing these calculations in Python programming, the study shows the method's practicality and flexibility for modern engineering tasks. The article introduces a Python-based structure using libraries like NumPy, Shapely, and Matplotlib for enabling efficient computational modelling and visualization. Through example problems, the versatility of the Shoelace Method in solving real-world engineering shapes is showcased.

Downloads

Download data is not yet available.

References

V.A. Windarni, A. Setiawan, A. Rahmatalia, COMPARISON OF THE KARNEY POLYGON METHOD AND THE SHOELACE METHOD FOR CALCULATING AREA, MATRIK J. Manajemen, Tek. Inform. Dan Rekayasa Komput. 23 (2023) 39–52. https://doi.org/10.30812/matrik.v23i1.2929.

A. Setiawan, E. Sediyono, CALCULATION OF CENTRAL JAVA PROVINCE REGION AREA USING SHOELACE FORMULA BASED ON THE GADM DATABASE, BAREKENG J. Ilmu Mat. Dan Terap. June 16 (2022) 597–606. https://doi.org/10.1063/5.0103178.

Y. Lee, W. Lim, Shoelace Formula: CONNECTING THE AREA OF A POLYGON AND THE VECTOR CROSS PRODUCT, Math. Teach. 110 (2017) 631–636. https://doi.org/10.5951/mathteacher.110.8.0631.

J. Gechlik, S. High, GAUSS ’ S AREA FORMULA FOR IRREGULAR SHAPES, (2024) 12–29.

B. Braden, The Surveyor’s Area Formula, Coll. Math. J. 17 (1986) 326–337. https://doi.org/10.1080/07468342.1986.11972974.

B.G. Ryder, M. Lou Soffa, M. Burnett, THE IMPACT OF SOFTWARE ENGINEERING RESEARCH ON MODERN PROGAMMING LANGUAGES, ACM Trans. Softw. Eng. Methodol. 14 (2005) 431–477. https://doi.org/10.1145/1101815.1101818.

P. Dumka, R. Chauhan, D.R. Mishra, F. Shaik, P. Govindaraj, A. Kumar, C. Sonawane, V.I. Velkin, DEVELOPMENT AND IMPLEMENTATION OF A PYTHON FUNCTIONS FOR AUTOMATED CHEMICAL REACTION BALANCING, Indones. J. Electr. Eng. Comput. Sci. 34 (2024) 1557–1565. https://doi.org/10.11591/ijeecs.v34.i3.pp1557-1565.

J. Ranjani, A. Sheela, K. Pandi Meena, COMBINATION OF NUMPY, SCIPY AND MATPLOTLIB/PYLAB-A GOOD ALTERNATIVE METHODOLOGY TO MATLAB-A COMPARATIVE ANALYSIS, in: Proc. 1st Int. Conf. Innov. Inf. Commun. Technol. ICIICT 2019, 2019: pp. 1–5. https://doi.org/10.1109/ICIICT1.2019.8741475.

S. Van Der Walt, S.C. Colbert, G. Varoquaux, The NumPy array: A STRUCTURE FOR EFFICIENT NUMERICAL COMPUTATION, Comput. Sci. Eng. 13 (2011) 22–30. https://doi.org/10.1109/MCSE.2011.37.

P. Dumka, R. Chauhan, A. Singh, G. Singh, D. Mishra, IMPLEMENTATION OF BUCKINGHAM ’ S PI THEOREM USING PYTHON, Adv. Eng. Softw. 173 (2022) 103232. https://doi.org/10.1016/j.advengsoft.2022.103232.

P. Mishra, P. Tewari, R. Mishra, Dhananjay, P. Dumka, INTEGRATION BASED ON MONTE CARLO SIMULATION, Int. J. Math. Sci. Comput. 9 (2023) 58–65. https://doi.org/10.5815/ijmsc.2023.03.05.

P. Mishra, P. Tewari, D.R. Mishra, P. Dumka, NUMERICAL MODELLING OF DOUBLE INTEGRATION WITH DIFFERENT DATA SPACING : A PYTHON-BASED APPROACH, 4 (2023) 46–54. https://doi.org/10.30511/MCS.2023.1990951.1115.

A. Meurer, C.P. Smith, M. Paprocki, O. Čertík, S.B. Kirpichev, M. Rocklin, Am.T. Kumar, S. Ivanov, J.K. Moore, S. Singh, T. Rathnayake, S. Vig, B.E. Granger, R.P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M.J. Curry, A.R. Terrel, Š. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, A. Scopatz, SymPy: SYMBOLIC COMPUTING IN PYTHON, PeerJ Comput. Sci. 2017 (2017) 1–27. https://doi.org/10.7717/peerj-cs.103.

M. Cywiak, D. Cywiak, SymPy, in: MULTI-PLATFORM GRAPH. PROGRAM. WITH KIVY BASIC ANAL. PROGRAM. 2D, 3D, Stereosc. Des., Apress, Berkeley, CA, 2021: pp. 173–190. https://doi.org/10.1007/978-1-4842-7113-1_11.

P. Dumka, P.S. Pawar, A. Sauda, G. Shukla, D.R. Mishra, APPLICATION OF HE’S HOMOTOPY AND PERTURBATION METHOD TO SOLVE HEAT TRANSFER EQUATIONS: A PYTHON APPROACH, Adv. Eng. Softw. 170 (2022) 103160. https://doi.org/10.1016/j.advengsoft.2022.103160.

V. Porcu, Matplotlib, in: PYTHON DATA MIN. Quick Syntax Ref., Apress, Berkeley, CA, 2018: pp. 201–234. https://doi.org/10.1007/978-1-4842-4113-4_10.

S. Gillies, THE SHAPELY USER MANUAL, URL Https//Pypi. Org/Project/Shapely (2013).

Y.C. Huei, BENEFITS AND INTRODUCTION TO PYTHON PROGRAMMING FOR FRESHMORE STUDENTS USING INEXPENSIVE ROBOTS, in: Proc. IEEE Int. Conf. Teaching, Assess. Learn. Eng. Learn. Futur. Now, TALE 2014, 2015: pp. 12–17. https://doi.org/10.1109/TALE.2014.7062611.

C. Liu, X. Sun, Z. Li, J. Cui, CALCULATION OF SHIP FLOATING STATE BY QUASI-NEWTON ITERATION METHOD FOR ONBOARD LOADING COMPUTER, Ships Offshore Struct. (2024) 1–10. https://doi.org/10.1080/17445302.2024.2335438.

S.P. Timoshenko, D.H. Young, ENGINEERING MECHANICS: statics, 1937.

E.E. Gdoutos, NUMERICAL METHODS, Courier Corporation, 2020. https://doi.org/10.1007/978-3-030-35098-7_16.

Published
2025-07-01
How to Cite
[1]
P. Dumka and D. R. Mishra, “THE SHOELACE ALGORITHM IN ENGINEERING: PYTHON APPLICATIONS FOR AREA AND INERTIAL ANALYSIS”, BAREKENG: J. Math. & App., vol. 19, no. 3, pp. 1637-1648, Jul. 2025.