NOWCASTING GROWTH AT RISK IN INDONESIA: APPLICATION OF MIDAS-QUANTILE REGRESSION MODEL

  • Turfah Latifah Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Indonesia https://orcid.org/0009-0001-2773-435X
  • Muhammad Sjahid Akbar Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Indonesia https://orcid.org/0000-0003-1490-4978
  • Dedy Dwi Prastyo Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Indonesia https://orcid.org/0000-0003-1194-769X
Keywords: GaR, MIDAS-QR, PCA, QMAE, QRMSE

Abstract

One of the main problems faced by policymakers in economic monitoring is the limited availability of predictive tools that can comprehensively and in real time measure economic growth risks, particularly amid financial market volatility and rapid changes in economic indicators. This study aims to nowcast Indonesian economic growth using the Growth at Risk (GaR) approach by applying the Mixed Data Sampling-Quantile Regression (MIDAS-QR) model. This approach predicts economic risks across different quantiles, capturing best- and worst-case scenarios by integrating multi-frequency indicators, namely the Financial Conditions Index (FCI), External Financial Environment Index (EFEI), and Macroeconomic Prosperity Leading Index (MPLI), summarized using Principal Component Analysis (PCA). Prediction accuracy is evaluated using Quantile Mean Absolute Error (QMAE), Quantile Root Mean Squared Error (QRMSE), and Clark-West (CW) test metrics. The analysis utilizes a dataset of Indonesia covering the period from January 2001 to March 2025, combining quarterly GDP growth data as the dependent variable and monthly predictor variables sourced from the Central Statistics Agency (BPS), Bank Indonesia, and the Indonesia Stock Exchange. The findings show that the MIDAS-QR model significantly improves the accuracy of GaR forecasting in Indonesia relative to conventional approaches. It effectively captures risk asymmetries across quantiles, minimizes predictive errors, and facilitates the timely detection of economic downturns, offering valuable insights for early action. This study highlights the strategic role of high-frequency data in enhancing forecast precision and real-time economic risk monitoring in Indonesia. The application of the MIDAS-QR model presents a valuable tool for policymakers in formulating proactive responses to global economic uncertainty and fostering resilient economic growth.

Downloads

Download data is not yet available.

References

J. Melka, “INDONESIA: OUTLOOK IS STRONG BUT VULNERABLE TO EXTERNAL SHOCKS,” BNP PARIBAS, no. January, pp. 11–12, 2025, [Online]. Available: https://economic-research.bnpparibas.com/html/en-US/Indonesia-Outlook-strong-vulnerable-external-shocks-2/11/2025,51313

LPEM FEB UI, “INDONESIA ECONOMIC OUTLOOK 2025,” pp. 1–30, 2024, [Online]. Available: lpem.org/wp-content/uploads/2024/08/IEO-Q3-2024-ID.pdf

J. Menon, “SOUTHEAST ASIA’S ECONOMIC PERFORMANCE IN 2024 AND OUTLOOK FOR 2025: NAVIGATING RISING RISKS,” FULCRUM SG. Accessed: Feb. 04, 2025. [Online]. Available: https://fulcrum.sg/southeast-asias-economic-performance-in-2024-and-outlook-for-2025-navigating-rising-risks/

OECD, ECONOMIC OUTLOOK FOR SOUTHEAST ASIA, CHINA AND INDIA 2023 - UPDATE. in Economic Outlook for Southeast Asia, China and India. OECD, 2023. doi: https://doi.org/10.1787/cd94bcf6-en.

E. Ghysels, V. Kvedaras, and V. Zemlys, “MIXED FREQUENCY DATA SAMPLING REGRESSION MODELS: THE R PACKAGE MIDASR,” J. Stat. Softw., vol. 72, no. 4, pp. 1–35, 2016. doi: https://doi.org/10.18637/jss.v072.i04.

W. H. Saputra, D. D. Prastyo, and H. Kuswanto, “MACHINE LEARNING MODELING ON MIXED-FREQUENCY DATA FOR FINANCIAL GROWTH AT RISK,” Procedia Comput. Sci., vol. 234, pp. 397–403, 2024. doi: https://doi.org/10.1016/j.procs.2024.03.020.

T. Adrian, N. Boyarchenko, and D. Giannone, “VULNERABLE GROWTH,” Am. Econ. Rev., vol. 109, no. 4, pp. 1263–1289, Apr. 2019, doi: https://doi.org/10.1257/aer.20161923.

Q. Zhang, H. Ni, and H. Xu, “NOWCASTING CHINESE GDP IN A DATA-RICH ENVIRONMENT: LESSONS FROM MACHINE LEARNING ALGORITHMS,” Econ. Model., vol. 122, p. 106204, May 2023. doi: https://doi.org/10.1016/j.econmod.2023.106204.

N.-S. Kwark and C. Lee, “ASYMMETRIC EFFECTS OF FINANCIAL CONDITIONS ON GDP GROWTH IN KOREA: A QUANTILE REGRESSION ANALYSIS,” Econ. Model., vol. 94, pp. 351–369, Jan. 2021. doi: https://doi.org/10.1016/j.econmod.2020.10.014.

T. Adrian and F. Vitek, “MANAGING MACROFINANCIAL RISK. IMF WORK,” International Monetary Fund, 2020. [Online]. Available: https://www.imf.org/en/Publications/WP/Issues/2020/08/07/Managing-Macrofinancial-Risk-49598. doi: https://doi.org/10.5089/9781513550893.001

Q. Xu, M. Xu, C. Jiang, and W. Fu, “MIXED-FREQUENCY GROWTH-AT-RISK WITH THE MIDAS-QR METHOD: EVIDENCE FROM CHINA,” Econ. Syst., vol. 47, no. 4, pp. 1–12, Dec. 2023. doi: https://doi.org/10.1016/j.ecosys.2023.101131 .

T. Adrian, D. He, N. Liang, and F. Natalucci, “A MONITORING FRAMEWORK FOR GLOBAL FINANCIAL STABILITY, IMF STAFF DISCUSSION NOTE SDN/19/06,” Int. Monet. Fund, 2019. doi: https://doi.org/10.5089/9781498300339.006

M. G. Chadwick and H. Ozturk, “MEASURING FINANCIAL SYSTEMIC STRESS FOR TURKEY: A SEARCH FOR THE BEST COMPOSITE INDICATOR,” Econ. Syst., vol. 43, no. 1, pp. 151–172, Mar. 2019. doi: https://doi.org/10.1016/j.ecosys.2018.09.004

X. Zhang and L. Liu, “FINANCIAL RISK AND ECONOMIC GROWTH UNDER THE NEW PARADIGM OF MACRO-ANALYSIS ON THE IMPACT OF THE COVID-19 PANDEMIC AND GROWTH AT RISK,” Econ. Res. J., vol. 55, pp. 4–21, 2020.

L. R. Lima, F. Meng, and L. Godeiro, “QUANTILE FORECASTING WITH MIXED-FREQUENCY DATA,” Int. J. Forecast., vol. 36, no. 3, pp. 1149–1162, Jul. 2020. doi: https://doi.org/10.1016/j.ijforecast.2018.09.011

Q. Xu, L. Chen, C. Jiang, and K. Yu, “MIXED DATA SAMPLING EXPECTILE REGRESSION WITH APPLICATIONS TO MEASURING FINANCIAL RISK,” Econ. Model., vol. 91, pp. 469–486, Sep. 2020. doi: https://doi.org/10.1016/j.econmod.2020.06.018

E. Ghysels, V. Kvedaras, and V. Zemlys-Balevičius, “CHAPTER 4 - MIXED DATA SAMPLING (MIDAS) REGRESSION MODELS,” in Handbook of Statistics, vol. 42, H. D. Vinod and C. R. Rao, Eds., in Handbook of Statistics, vol. 42. , Elsevier, 2020, CH. Chapter 4, pp. 117–153. doi: https://doi.org/10.1016/bs.host.2019.01.005

D. T. Utari and H. Ilma, “COMPARISON OF METHODS FOR MIXED DATA SAMPLING (MIDAS) REGRESSION MODELS TO FORECAST INDONESIAN GDP USING AGRICULTURAL EXPORTS,” in AIP Conference Proceedings, 2018, p. 060016. doi: https://doi.org/10.1063/1.5062780

R. Koenker, “QUANTILE REGRESSION: 40 YEARS ON,” Annu. Rev. Econom., vol. 9, no. 1, pp. 155–176, Aug. 2017. doi: https://doi.org/10.1146/annurev-economics-063016-103651

J. Suarez, “GROWTH-AT-RISK AND MACROPRUDENTIAL POLICY DESIGN,” J. Financ. Stab., vol. 60, 2022. doi: https://doi.org/10.1016/j.jfs.2022.101008

L. Ferrara, M. Mogliani, and J.-G. Sahuc, “HIGH-FREQUENCY MONITORING OF GROWTH AT RISK,” Int. J. Forecast., vol. 38, no. 2, pp. 582–595, Apr. 2022. doi: https://doi.org/10.1016/j.ijforecast.2021.06.010

S. M. Juhro and B. N. Iyke, “MONETARY POLICY AND FINANCIAL CONDITIONS IN INDONESIA,” Bul. Ekon. Monet. dan Perbank., vol. 21, no. 3, pp. 283–302, Feb. 2019. doi: https://doi.org/10.21098/bemp.v21i3.1005

P. M. Pincheira and K. D. West, “A COMPARISON OF SOME OUT-OF-SAMPLE TESTS OF PREDICTABILITY IN ITERATED MULTI-STEP-AHEAD FORECASTS,” Res. Econ., vol. 70, no. 2, pp. 304–319, Jun. 2016. doi: https://doi.org/10.1016/j.rie.2016.03.002

E. Ghysels, L. Iania, and J. Striaukas, “QUANTILE-BASED INFLATION RISK MODELS,” National Bank of Belgium, Brussels, 2018.

L. WU and J. QIU, APPLIED MULTIVARIATE STATISTICAL ANALYSIS AND RELATED TOPICS WITH R. EDP SCIENCES, 2021. doi: https://doi.org/10.1051/978-2-7598-2602-5

Published
2025-11-24
How to Cite
[1]
T. Latifah, M. S. Akbar, and D. D. Prastyo, “NOWCASTING GROWTH AT RISK IN INDONESIA: APPLICATION OF MIDAS-QUANTILE REGRESSION MODEL”, BAREKENG: J. Math. & App., vol. 20, no. 1, pp. 0673-0690, Nov. 2025.