NUMERICAL SOLUTIONS OF HERMITE DIFFERENTIAL EQUATIONS USING LEGENDRE MULTIWAVELETS
Abstract
This paper presents a numerical method for solving Hermite differential equations (HDEs) using operational integration matrices derived from Legendre multiwavelets of linear, quadratic, and cubic orders. The proposed technique transforms HDEs into algebraic systems, enabling efficient and accurate numerical solutions. Through several illustrative examples, the method’s effectiveness is demonstrated, with Cubic Legendre Multiwavelets (CLMW) exhibiting superior accuracy in approximating exact solutions.
Downloads
References
A. Kumari and V. K. Kukreja, “SURVEY OF HERMITE INTERPOLATING POLYNOMIALS FOR THE SOLUTION OF DIFFERENTIAL EQUATIONS,” Mathematics, vol. 11, no. 14, Jul. 2023. doi: https://doi.org/10.3390/math11143157.
E. O. Adeyefa, E. O. Omole, and A. Shokri, “NUMERICAL SOLUTION OF SECOND-ORDER NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS ORIGINATING FROM PHYSICAL PHENOMENA USING HERMITE BASED BLOCK METHODS,” Results Phys., vol. 46, Mar. 2023. doi: https://doi.org/10.1016/j.rinp.2023.106270.
F. Khellat and S. A. Yousefi, “THE LINEAR LEGENDRE MOTHER WAVELETS OPERATIONAL MATRIX OF INTEGRATION AND ITS APPLICATION,” J. Franklin Inst., vol. 343, no. 2, pp. 181–190, Mar. 2006. doi: https://doi.org/10.1016/j.jfranklin.2005.11.002.
E. Babolian and F. Fattahzadeh, “NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS BY USING CHEBYSHEV WAVELET OPERATIONAL MATRIX OF INTEGRATION,” Appl. Math. Comput., vol. 188, no. 1, pp. 417–426, May 2007. doi: https://doi.org/10.1016/j.amc.2006.10.008.
S. C. Shiralashetti and S. Kumbinarasaiah, “HERMITE WAVELETS OPERATIONAL MATRIX OF INTEGRATION FOR THE NUMERICAL SOLUTION OF NONLINEAR SINGULAR INITIAL VALUE PROBLEMS,” Alexandria Eng. J., vol. 57, no. 4, pp. 2591–2600, Dec. 2018. doi: https://doi.org/10.1016/j.aej.2017.07.014.
N. A. Khan, M. Ali, A. Ara, M. I. Khan, S. Abdullaeva, and M. Waqas, “OPTIMIZING PANTOGRAPH FRACTIONAL DIFFERENTIAL EQUATIONS: A HAAR WAVELET OPERATIONAL MATRIX METHOD,” Partial Differ. Equations Appl. Math., vol. 11, Sep. 2024. doi: https://doi.org/10.1016/j.padiff.2024.100774.
A. Ravichandran and P. K. Mohanty, “HERMITE TYPE RADIAL BASIS FUNCTION-BASED DIFFERENTIAL QUADRATURE APPROACH ALLOWS FOR FREE VIBRATION BEAMS FOR HIGHER ORDER EQUATIONS,” Mater. Today Proc., vol. 72, pp. 2151–2154, Jan. 2023. doi: https://doi.org/10.1016/j.matpr.2022.08.259.
B. K. Alpert, “A CLASS OF BASES IN FOR THE SPARSE REPRESENTATION OF INTEGRAL OPERATORS,” SIAM J. Math. Anal., vol. 24, no. 1, pp. 246–262, Jan. 1993. doi: https://doi.org/10.1137/0524016.
X. Zhang and H. Du, “A GENERALIZED COLLOCATION METHOD IN REPRODUCING KERNEL SPACE FOR SOLVING A WEAKLY SINGULAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS,” Appl. Numer. Math., vol. 156, pp. 158–173, Oct. 2020. doi: https://doi.org/10.1016/j.apnum.2020.04.019.
H. Du, Z. Chen, and T. Yang, “A STABLE LEAST RESIDUE METHOD IN REPRODUCING KERNEL SPACE FOR SOLVING A NONLINEAR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION WITH A WEAKLY SINGULAR KERNEL,” Appl. Numer. Math., vol. 157, pp. 210–222, Nov. 2020. doi: https://doi.org/10.1016/j.apnum.2020.06.004.
I. Khan, M. Asif, R. Amin, Q. Al-Mdallal, and F. Jarad, “ON A NEW METHOD FOR FINDING NUMERICAL SOLUTIONS TO INTEGRO-DIFFERENTIAL EQUATIONS BASED ON LEGENDRE MULTI-WAVELETS COLLOCATION,” Alexandria Eng. J., vol. 61, no. 4, pp. 3037–3049, Apr. 2022. doi: https://doi.org/10.1016/j.aej.2021.08.032.
R. T. Matoog, M. A. Ramadan, and H. M. Arafa, “A HYBRID NUMERICAL TECHNIQUE FOR SOLVING FRACTIONAL FREDHOLM-VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS USING RAMADAN GROUP INTEGRAL TRANSFORM AND HERMITE POLYNOMIALS,” Alexandria Eng. J., vol. 108, pp. 889–896, Dec. 2024. doi: https://doi.org/10.1016/j.aej.2024.09.025.
K. Jarczewska, W. Glabisz, and W. Zielichowski-Haber, “MULTIWAVELETS AND MULTIWAVELET PACKETS OF LEGENDRE FUNCTIONS IN THE DIRECT METHOD FOR SOLVING VARIATIONAL PROBLEMS,” Springer, vol. 15, no. 1, pp. 1–10, Jan. 2015. doi: https://doi.org/10.1016/j.acme.2014.04.008.
A. Daneshkhah, G. Parham, O. Chatrabgoun, and M. Jokar, “APPROXIMATION MULTIVARIATE DISTRIBUTION WITH PAIR COPULA USING THE ORTHONORMAL POLYNOMIAL AND LEGENDRE MULTIWAVELETS BASIS FUNCTIONS,” Taylor Fr., vol. 45, no. 2, pp. 389–419, Feb. 2016. doi: https://doi.org/10.1080/03610918.2013.804557.
J. S. Geronimo, P. Iliev, and W. Van Assche, “ALPERT MULTIWAVELETS AND LEGENDRE--ANGELESCO MULTIPLE ORTHOGONAL POLYNOMIALs,” SIAM, vol. 49, no. 1, pp. 626–645, 2017. doi: https://doi.org/10.1137/16M1064465.
S. Paul, M. M. Panja, and B. N. Mandal, “USE OF LEGENDRE MULTIWAVELETS TO SOLVE CARLEMAN TYPE SINGULAR INTEGRAL EQUATIONS,” Appl. Math. Model., vol. 55, pp. 522–535, Mar. 2018. doi: https://doi.org/10.1016/j.apm.2017.11.008.
E. Ashpazzadeh, Y. M. Chu, M. S. Hashemi, M. Moharrami, and M. Inc, “HERMITE MULTIWAVELETS REPRESENTATION FOR THE SPARSE SOLUTION OF NONLINEAR ABEL’S INTEGRAL EQUATION,” Appl. Math. Comput., vol. 427, Aug. 2022. doi: https://doi.org/10.1016/j.amc.2022.127171.
M. Devi, S. Sharma, and S. Rawan, “NUMERICAL SOLUTIONS OF SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS USING HAAR WAVELET APPROACH,” Poincare J. Anal. Appl., vol. 10, no. 1, pp. 61–73, 2023. doi: https://doi.org/10.46753/pjaa.2023.v010i01.005.
M. Devi, S. Rawan, V. K. Srivastava, and S. C. Rawan, “NUMERICAL SOLUTIONS OF INTEGRAL EQUATIONS USING LINEAR LEGENDRE MULTIWAVELETS,” Int. J. Appl. Comput. Math., vol. 10, no. 6, pp. 1–12, 2024. doi: https://doi.org/10.1007/s40819-024-01799-1.
M. Singh, S. Sharma, and S. Rawan, “SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS USING OPERATIONAL MATRIX OF BERNOULLI ORTHONORMAL POLYNOMIALS,” Poincare J. Anal. Appl., vol. 7, no. 1, pp. 51–60, 2020. doi: https://doi.org/10.46753/pjaa.2020.v07i01.006.
M. J. Kheirdeh, A. Askari Hemmat, and H. Saeedi, “ON S-ELEMENTARY WAVELETS IN R AND THEIR APPLICATIONS IN SOLVING INTEGRAL EQUATIONS,” Poincare J. Anal. Appl., vol. 11, no. 1, pp. 67–84, 2024. doi: https://doi.org/10.46753/pjaa.2024.v011i01.005.
J. K. Sahani, P. Kumar, A. Kumar, and N. Khanna, “NUMERICAL SOLUTION OF NON-LINEAR LIÉNARD EQUATION USING HAAR WAVELET METHOD,” Poincare J. Anal. Appl., vol. 11, no. 2, pp. 197–210, 2024. doi: https://doi.org/10.46753/pjaa.2024.v011i02.009.
Z. G. Liu, “ON A SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS AND THE BIVARIATE HERMITE POLYNOMIALS,” J. Math. Anal. Appl., vol. 454, no. 1, pp. 1–17, Oct. 2017. doi: https://doi.org/10.1016/j.jmaa.2017.04.066.
S. Kumbinarasaiah and K. R. Raghunatha, “THE APPLICATIONS OF HERMITE WAVELET METHOD TO NONLINEAR DIFFERENTIAL EQUATIONS ARISING IN HEAT TRANSFER,” Int. J. Thermofluids, vol. 9, Feb. 2021. doi: https://doi.org/10.1016/j.ijft.2021.100066.
M. Faheem, A. Khan, and A. Raza, “A HIGH RESOLUTION HERMITE WAVELET TECHNIQUE FOR SOLVING SPACE–TIME-FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS,” Math. Comput. Simul., vol. 194, pp. 588–609, Apr. 2022. doi: https://doi.org/10.1016/j.matcom.2021.12.01.
E. Pourfattah, M. Jahangiri Rad, and B. Nemati Saray, “AN EFFICIENT ALGORITHM BASED ON THE PSEUDOSPECTRAL METHOD FOR SOLVING ABEL’S INTEGRAL EQUATION USING HERMITE CUBIC SPLINE SCALING BASES,” Appl. Numer. Math., vol. 185, pp. 434–445, Mar. 2023. doi: https://doi.org/10.1016/j.apnum.2022.12.005.
A. Ali, N. Senu, N. Wahi, N. Almakayeel, and A. Ahmadian, “AN ADAPTIVE ALGORITHM FOR NUMERICALLY SOLVING FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USING HERMITE WAVELET ARTIFICIAL NEURAL NETWORKS,” Commun. Nonlinear Sci. Numer. Simul., vol. 137, Oct. 2024. doi: https://doi.org/10.1016/j.cnsns.2024.108121.
S. A. Wani, M. Zayed, H. Ali, and S. Khan, “FAMILIES OF DIFFERENTIAL EQUATIONS ASSOCIATED WITH THE GENERALIZED 1-PARAMETER 3-VARIABLE HERMITE–FROBENIUS–EULER POLYNOMIALS,” Reports Math. Phys., vol. 95, no. 1, pp. 53–70, Feb. 2025. doi: https://doi.org/10.1016/S0034-4877(25)00010-2.
S. Santra and R. Behera, “SIMULTANEOUS SPACE–TIME HERMITE WAVELET METHOD FOR TIME-FRACTIONAL NONLINEAR WEAKLY SINGULAR INTEGRO-PARTIAL DIFFERENTIAL EQUATIONS,” Commun. Nonlinear Sci. Numer. Simul., vol. 140, Jan. 2025. doi: https://doi.org/10.1016/j.cnsns.2024.108324.
Copyright (c) 2025 Meenu Devi, Sunil Rawan, Sushil Chandra Rawan, Vineet Kishore Srivastava

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.




1.gif)


