INTEGRATING HOUSING ENVIRONMENTAL FACTORS INTO THE SEIR MODEL FOR PULMONARY TUBERCULOSIS TRANSMISSION: A CASE STUDY IN BANJAR, INDONESIA

  • Yuni Yulida Student of Doctoral Program of Environmental Science, Universitas Lambung Mangkurat, Indonesia https://orcid.org/0000-0003-2015-8326
  • Eko Suhartono Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Health Science, Universitas Lambung Mangkurat, Indonesia https://orcid.org/0000-0002-1239-6335
  • Dewi Anggraini Department of Statistics, Faculty of Mathematics and Natural Science, Universitas Lambung Mangkurat, Indonesia https://orcid.org/0000-0003-3481-6422
  • Syamsul Arifin Department of Public Health, Faculty of Medicine and Health Science, Universitas Lambung Mangkurat, Indonesia https://orcid.org/0000-0001-9057-1197
Keywords: Logistic regression, Physical environment, Pulmonary TB, SEIR model

Abstract

Pulmonary Tuberculosis (TB) remains one of the serious public health issues in Indonesia, including in Banjar Regency. The transmission of TB is not only influenced by biological and behavioral factors but also highly depends on the characteristics of the living environment. This study aims to analyze the influence of physical environmental factors of housing on the incidence of pulmonary TB, and to integrate the analysis results into a modified SEIR model. The research was conducted using a cross-sectional observational approach involving 73 respondents from the working areas of Puskesmas Martapura 1 and Martapura 2. Data were collected through direct observation and interviews, and analyzed using binary logistic regression to identify significant variables. The significant variables were subsequently integrated into the transmission rate parameters in the SEIR model. The results show that ventilation area and room temperature have a significant impact on the incidence of pulmonary TB. Empirical findings show that the probability of pulmonary TB incidence is highest (86.68%) when both ventilation and temperature are below standard, and lowest (26.23%) when both meet the standards. Partial compliance still results in a high probability of incidence (around 60%). The SEIR model simulation with environmental scenarios shows that living conditions that do not meet ventilation area and temperature standards result in more aggressive TB transmission. Conversely, living conditions that meet both standards significantly reduce the number of infected individuals and increase the recovery rate. This research emphasizes the importance of environment-based interventions in a comprehensive TB control strategy.

Downloads

Download data is not yet available.

References

Y. Zhao, M. Li, and S. Yuan, “ANALYSIS OF TRANSMISSION AND CONTROL OF TUBERCULOSIS IN MAINLAND CHINA, 2005-2016, BASED ON THE AGE-STRUCTURE MATHEMATICAL MODEL,” Int. J. Environ. Res. Public Health, vol. 14, no. 10, pp. 2005–2016, 2017. doi: https://doi.org/10.3390/ijerph14101192.

J. Y. Lee, “DIAGNOSIS AND TREATMENT OF EXTRAPULMONARY TUBERCULOSIS,” Tuberc Respir Dis, vol. 78, no. 2, pp. 47–55, 2015. doi: https://doi.org/10.4046/trd.2015.78.2.47.

WHO, “GLOBAL TUBERCULOSIS REPORT 2023,” 2023. [Online]. Available: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023

WHO, “GLOBAL TUBERCULOSIS REPORT 2024.,” 2024. [Online]. Available: https://www.who.int/teams/global-programme-on-tuberculosis-and-lung-health/tb-reports/global-tuberculosis-report-2024

H. Haryati, E. A. Mahfud, and M. A. Faisal, “EXTRA OCULAR TB COEXISTING PULMONARY TB: AN INFREQUENT CASE,” Pneumon, vol. 37, no. 3, pp. 1–5, 2024. doi: https://doi.org/10.18332/pne/191739.

South Kalimantan Provincial Diskominfo, “NUMBER OF TUBERCULOSIS (TB) CASES,” 2024. Accessed: Jan. 05, 2025. [Online]. Available: https://data.kalselprov.go.id/dataset/data/1411.

A. H. Khan, “TUBERCULOSIS CONTROL IN SINDH , PAKISTAN : CRITICAL ANALYSIS OF ITS IMPLEMENTATION ଝ,” J. Infect. Public Health, vol. 10, no. 1, pp. 1–7, 2017. doi: https://doi.org/10.1016/j.jiph.2016.02.007.

J. T. John and R. Z. Kompithra, “ECO-EPIDEMIOLOGY TRIAD TO EXPLAIN INFECTIOUS DISEASES,” Indian J. Med. Res., vol. 158, no. August, pp. 107–112, 2023. doi: https://doi.org/10.4103/ijmr.ijmr_3031_21.

Z. Ding et al., “THE IMPACT OF AIR POLLUTION ON THE TRANSMISSION OF PULMONARY TUBERCULOSIS,” Math. Biosci. Eng., vol. 17, no. 4, pp. 4317–4327, 2020. doi: https://doi.org/10.3934/mbe.2020238.

R. Verma et al., “DETECTION OF M . TUBERCULOSIS IN THE ENVIRONMENT AS A TOOL FOR IDENTIFYING HIGH-RISK LOCATIONS FOR TUBERCULOSIS TRANSMISSION,” Sci. Total Environ., vol. 843, no. 2022, p. 156970, 2022. doi: https://doi.org/10.1016/j.scitotenv.2022.156970.

Y. Yulida, E. Suhartono, D. Anggraini, and S. Arifin, “MATHEMATICAL MODELS OF TUBERCULOSIS DISEASE AND ENVIRONMENTAL FACTORS: A SYSTEMATIC REVIEW,” Pakistan J. Life Soc. Sci., vol. 22, no. 1, pp. 4116–4130, 2024, [Online]. Available: https://www.pjlss.edu.pk/pdf_files/2024_1/4116-4130.pdf

H. Zhang, M. Liu, W. Fan, S. Sun, and X. Fan, “THE IMPACT OF MYCOBACTERIUM TUBERCULOSIS COMPLEX IN THE ENVIRONMENT ON ONE HEALTH APPROACH,” Front. Public Heal., vol. 10, no. 994745, 2022. doi: https://doi.org/10.3389/fpubh.2022.994745.

F. Heriyani, A. H. Husodo, and Y. Djam′an Saleh, “RISK FACTORS OF THE INCIDENCE OF PULMONARY TUBERCULOSIS IN BANJARMASIN CITY, KALIMANTAN, INDONESIA,” Int. J. Public Heal. Sci., vol. 2, no. 1, pp. 1–6, 2013. doi: https://doi.org/10.11591/ijphs.v2i1.1483.

C. Y. Zhang and A. Zhang, “CLIMATE AND AIR POLLUTION ALTER INCIDENCE OF TUBERCULOSIS IN BEIJING, CHINA,” Ann. Epidemiol., vol. 37, no. 2019, pp. 71–76, 2019, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1047279719300559. doi: https://doi.org/10.1016/j.annepidem.2019.07.003

M. Xu et al., “TEMPERATURE AND HUMIDITY ASSOCIATED WITH INCREASES IN TUBERCULOSIS NOTIFICATIONS: A TIME-SERIES STUDY IN HONG KONG,” Epidemiol. Infect., vol. 149, no. e8, pp. 1–9, 2021. doi: https://doi.org/10.1017/ S0950268820003040

A. Ghadimi-Moghadam, “ENVIRONMENTAL AND CLIMATIC FACTORS INFLUENCING THE OCCURRENCE AND DISTRIBUTION OF TUBERCULOSIS IN SOUTHWEST IRAN: A GIS-BASED STUDY,” Acta Medica Mediterr., vol. 36, no. 1, pp. 557–563, 2020. doi: https://doi.org/10.19193/0393-6384_2020_1_88.

T. K. Kar and P. K. Mondal, “GLOBAL DYNAMICS OF A TUBERCULOSIS EPIDEMIC MODEL AND THE INFLUENCE OF BACKWARD BIFURCATION,” J. Math. Model. Algorithms, vol. 11, no. 4, pp. 433–459, 2012. doi: https://doi.org/10.1007/s10852-012-9210-8.

S. Athithan and M. Ghosh, “MATHEMATICAL MODELLING OF TB WITH THE EFFECTS OF CASE DETECTION AND TREATMENT,” Int. J. Dyn. Control, vol. 1, no. 3, pp. 223–230, 2013. doi: https://doi.org/10.1007/s40435-013-0020-2.

J. Zhang and G. Feng, “GLOBAL STABILITY FOR A TUBERCULOSIS MODEL WITH ISOLATION AND INCOMPLETE TREATMENT,” Comput. Appl. Math., vol. 34, no. 3, pp. 1237–1249, 2015. doi: https://doi.org/10.1007/s40314-014-0177-0.

S. Ullah, M. A. Khan, M. Farooq, and T. Gul, “MODELING AND ANALYSIS OF TUBERCULOSIS (TB) IN KHYBER PAKHTUNKHWA, PAKISTAN,” Math. Comput. Simul., vol. 165, pp. 181–199, 2019. doi: https://doi.org/10.1016/j.matcom.2019.03.012.

L. N. Nkamba, T. T. Manga, F. Agouanet, and M. L. M. Manyombe, “MATHEMATICAL MODEL TO ASSESS VACCINATION AND EFFECTIVE CONTACT RATE IMPACT IN THE SPREAD OF TUBERCULOSIS,” J. Biol. Dyn., vol. 13, no. 1, pp. 26–42, 2019. doi: https://doi.org/10.1080/17513758.2018.1563218.

A. K. Mengistu and P. J. Witbooi, “MODELING THE EFFECTS OF VACCINATION AND TREATMENT ON TUBERCULOSIS TRANSMISSION DYNAMICS,” J. Appl. Math., vol. 2019, pp. 1–9, 2019. doi: https://doi.org/10.1155/2019/7463167.

Y. A. Liana, J. Z. Ndendya, and N. Shaban, “THE NUTRITIONAL NEXUS: MODELING THE IMPACT OF MALNUTRITION ON TB TRANSMISSION,” Sci. African, vol. 27, pp. 1–20, 2025. doi: https://doi.org/10.1016/j.sciaf.2024.e02516.

O. J. Peter, D. Aldila, T. A. Ayoola, G. B. Bologun, and F. A. Oguntolu, “MODELING TUBERCULOSIS DYNAMICS WITH VACCINATION AND TREATMENT STRATEGIES,” Sci. African J., vol. 28, no. 2025, p. e02647, 2025. doi: https://doi.org/10.1016/j.sciaf.2025.e02647.

F. O. Mettle, P. O. Affi, and C. Twumasi, “MODELLING THE TRANSMISSION DYNAMICS OF TUBERCULOSIS IN THE ASHANTI REGION OF GHANA.,” 2020. doi: https://doi.org/10.1155/2020/4513854.

Y. Cai et al., “MODELLING THE EFFECTS OF THE CONTAMINATED ENVIRONMENTS ON TUBERCULOSIS IN JIANGSU, CHINA,” J. Theor. Biol., vol. 508, no. 2021, p. 110453, 2021. doi: https://doi.org/10.1016/j.jtbi.2020.110453.

Q. Li and F. Wang, “AN EPIDEMIOLOGICAL MODEL FOR TUBERCULOSIS CONSIDERING ENVIRONMENTAL TRANSMISSION AND REINFECTION,” Mathematics, vol. 11, no. 2423, pp. 1–17, 2023. doi: https://doi.org/10.3390/math11112423.

I. Ullah, S. Ahmad, and M. Zahri, “INVESTIGATION OF THE EFFECT OF AWARENESS AND TREATMENT ON TUBERCULOSIS INFECTION VIA A NOVEL EPIDEMIC MODEL,” Alexandria Eng. J., vol. 68, pp. 127–139, 2023. doi: https://doi.org/10.1016/j.aej.2022.12.061.

Kementerian Kesehatan RI, PERATURANN MENTERI KESEHATAN RI NOMOR 2 TAHUN 2023. 2023.

C. Tesema, K. Tadesse, M. Gebrehiwot, A. Tsegaw, and F. Weldegebreal, “ENVIRONMENTAL AND HOST-RELATED DETERMINANTS OF TUBERCULOSIS IN METEMA DISTRICT , NORTH-WEST,” Drug. Healthc. Patient Saf., vol. 7, pp. 87–95, 2015. doi: https://doi.org/10.2147/DHPS.S82070.

F. Fahdhienie, M. Mudatsir, T. F. Abidin, and N. Nurjannah, “RISK FACTORS OF PULMONARY TUBERCULOSIS IN INDONESIA: A CASE-CONTROL STUDY IN A HIGH DISEASE PREVALENCE REGION,” Narra J, vol. 4, no. 2, 2024. doi: https://doi.org/10.52225/narra.v4i2.943.

D. C. Montgomery, E. A. Peck, and G. G. Vining, LINEAR REGRESSION ANALYSIS. Canada: John Wiley & Sons, Canada, 2012.

D. W. Hosmer and S. Lemeshow, APPLIED LOGISTIC REGRESSION. New York: John Wiley & Sons Inc, 2000. [Online]. Available: https://onlinelibrary.wiley.com/doi/chapter-epub/10.1002/9781118548387.fmatter

K. Das, B. S. N. Murthy, S. A. Samad, and M. H. A. Biswas, “MATHEMATICAL TRANSMISSION ANALYSIS OF SEIR TUBERCULOSIS DISEASE MODEL,” Sensors Int., vol. 2, no. 2021, p. 100120, 2021. doi: https://doi.org/10.1016/j.sintl.2021.100120.

P. H. Lee, “IS A CUTOFF OF 10 % APPROPRIATE FOR THE CHANGE-IN-ESTIMATE CRITERION OF CONFOUNDER IDENTIFICATION ? SHORT COMMUNICATION IS A CUTOFF OF 10 % APPROPRIATE FOR THE CHANGE-IN-ESTIMATE CRITERION OF CONFOUNDER IDENTI FI CATION ?,” J Epidemiol, vol. 24, no. 2, pp. 161–167, 2014. doi: https://doi.org/10.2188/jea.JE20130062.

S. M. Lestari, Y. Yulida, A. S. Lestia, and M. A. Karim, “STABILITY ANALYSIS OF A SMOKING BEHAVIOR MODEL,” in Journal of Physics: Conference Series, 2021. doi: https://doi.org/10.1088/1742-6596/2106/1/012025.

Y. Yulida, A. S. Wiranto, Faisal, M. A. Karim, and O. Soesanto, “SACR EPIDEMIC MODEL FOR THE SPREAD OF HEPATITIS B DISEASE BY CONSIDERING VERTICAL TRANSMISSION,” BAREKENG J. Math. App., vol. 18, no. 4, pp. 2491–2504, 2024. doi: https://doi.org/10.30598/barekengvol18iss4pp2491-2504

M. Jannah, M. Ahsar Karim, and Y. Yulida, “ANALISIS KESTABILAN MODEL SEIR UNTUK PENYEBARAN COVID-19 DENGAN PARAMETER VAKSINASI,” BAREKENG J. Ilmu Mat. dan Terap., vol. 15, no. 3, pp. 535–542, 2021. doi: https://doi.org/10.30598/barekengvol15iss3pp535-542.

P. Van Den Driessche and J. Watmough, “REPRODUCTION NUMBERS AND SUB-THRESHOLD ENDEMIC EQUILIBRIA FOR COMPARTMENTAL MODELS OF DISEASE TRANSMISSION,” Math. Biosci., vol. 180, no. 1–2, pp. 29–48, 2002. doi: https://doi.org/10.1016/S0025-5564(02)00108-6.

F. Gantmacher, THE THEORY OF MATRICES. New York: Chelsea Publishing Company, 2000.

BPS Prov. KalSel, “(METODE BARU) UMUR HARAPAN HIDUP SAAT LAHIR (TAHUN), 2024.” [Online]. Available: https://kalsel.bps.go.id/id/statistics-table/2/NjAjMg==/-metode-baru-angka-harapan-hidup-saat-lahir.html

N. Chitnis, J. M. Hyman, and J. M. Cushing, “DETERMINING IMPORTANT PARAMETERS IN THE SPREAD OF MALARIA THROUGH THE SENSITIVITY ANALYSIS OF A MATHEMATICAL MODEL,” Bull. Math. Biol., vol. 70, no. 5, pp. 1272–1296, 2008. doi: https://doi.org/10.1007/s11538-008-9299-0.

S. Edward and N. Nyerere, “A MATHEMATICAL MODEL FOR THE DYNAMICS OF CHOLERA WITH CONTROL MEASURES,” vol. 4, no. 2, pp. 53–63, 2015. doi: https://doi.org/10.11648/j.acm.20150402.14.

Published
2025-11-24
How to Cite
[1]
Y. Yulida, E. Suhartono, D. Anggraini, and S. Arifin, “INTEGRATING HOUSING ENVIRONMENTAL FACTORS INTO THE SEIR MODEL FOR PULMONARY TUBERCULOSIS TRANSMISSION: A CASE STUDY IN BANJAR, INDONESIA”, BAREKENG: J. Math. & App., vol. 20, no. 1, pp. 0711-0728, Nov. 2025.