POISSON MIXED MODELS WITH A BOOSTING APPROACH FOR THE ANALYSIS OF COUNT DATA

Keywords: Boosting, Count data, High-dimensional data, Poisson mixed models

Abstract

Boosting is a powerful technique for enhancing predictive accuracy by iteratively reweighting observations, and is particularly effective in high-dimensional settings and for variable selection. While previous studies have demonstrated the advantages of integrating boosting with generalized linear mixed models (GLMMs) for binary outcomes, its application to count data within hierarchical frameworks remains limited. This study addresses that gap by extending boosting methods to count data through the development of a boosted Poisson mixed model (bPMM), a novel approach for small area estimation and variable selection in complex survey designs. The proposed model is applied to fertility data in the Indonesian provinces of Bali and East Nusa Tenggara, where the response variable is the number of live births and the predictors include twenty-eight socio-demographic covariates. Using the Akaike Information Criterion (AIC) for model selection, three significant variables were identified in Bali (Model 1), and one in East Nusa Tenggara (Model 2). The results demonstrate that bPMM not only improves variable selection in high-dimensional settings but also accommodates hierarchical structure in count data.

Downloads

Download data is not yet available.

References

T. Hastie, R. Tibshirani, and J. Friedman, THE ELEMENTS OF STATISTICAL LEARNING: DATA MINING, INFERENCE, AND PREDICTION, 2nd ed. New York: Springer, 2009. [Online]. Available: https://link.springer.com/book/10.1007/978-0-387-84858-7?utm_source=chatgpt.com

M. Balzer, E. Bergherr, S. Hutter, and T. Hepp, GRADIENT BOOSTING FOR DIRICHLET REGRESSION MODELS, no. 0123456789. Springer Berlin Heidelberg, 2025. doi: https://doi.org/10.1007/s10182-025-00526-5

A. Alsahaf, N. Petkov, V. Shenoy, and G. Azzopardi, “A FRAMEWORK FOR FEATURE SELECTION THROUGH BOOSTING”, Expert Syst. Appl., vol. 187, no. Sept. 2021, p. 115895, 2022. doi: https://doi.org/10.1016/j.eswa.2021.115895.

G. Schultz Lindenmeyer and H. da Silva Torrent, “BOOSTING AND PREDICTABILITY OF MACROECONOMIC VARIABLES: EVIDENCE FROM BRAZIL”, vol. 64, no. 1. Springer US, 2024. doi: https://doi.org/10.1007/s10614-023-10421-3.

P. Bühlmann and T. Hothorn, “BOOSTING ALGORITHMS: REGULARIZATION, PREDICTION AND MODEL FITTING”, Stat. Sci., vol. 22, no. 4, pp. 477–505, 2007. doi: https://doi.org/10.1214/07-STS242.

Y. Freund and R. E. Schapire, “EXPERIMENTS WITH A NEW BOOSTING ALGORITHM”, Proc. 13th Int. Conf. Mach. Learn., pp. 148–156, 1996, doi: https://doi.org/10.1.1.133.1040.

R. Wang, “ADABOOST FOR FEATURE SELECTION, CLASSIFICATION AND ITS RELATION WITH SVM, A REVIEW”, Phys. Procedia, vol. 25, pp. 800–807, 2012. doi: https://doi.org/10.1016/j.phpro.2012.03.160.

L. Pebrianti, F. Aulia, H. Nisa, and K. Saputra S, “IMPLEMENTATION OF THE ADABOOST METHOD TO OPTIMIZE THE CLASSIFICATION OF DIABETES DISEASES WITH THE NAÏVE BAYES ALGORITHM”, J. Sist. dan Teknol. Inf., vol. 7, no. 2, pp. 122–127, 2022, [Online]. Available: http://jurnal.unmuhjember.ac.id/index.php/JUSTINDO

P. Beja-Battais and C. Borelli, “OVERVIEW OF ADABOOST : RECONCILING ITS VIEWS TO BETTER UNDERSTAND ITS DYNAMICS”, arXiv:2310.18323v1, pp. 3–31, 2023, [Online]. Available: http://arxiv.org/abs/2310.18323

J. Friedman, T. Hastie, and R. Tibshirani, “ADDITIVE LOGISTIC REGRESSION: A STATISTICAL VIEW OF BOOSTING”, Ann. Stat., vol. 28, no. 2, pp. 337–374, 2000. doi: https://doi.org/10.1214/aos/1016120463.

A. S. Suggala, B. Liu, and P. Ravikumar, “GENERALIZED BOOSTING,” in Advances in Neural Information Processing Systems 33, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds. Vancouver, Canada: NeurIPS, 2020.

L. Knieper, T. Hothorn, E. Bergherr, and C. Griesbach, “GRADIENT BOOSTING FOR GENERALISED ADDITIVE MIXED MODELS”, Stat. Comput., vol. 35, no. 4, 2025. doi: https://doi.org/10.1007/s11222-025-10612-y.

G. Tutz and A. Groll, “LIKELIHOOD-BASED BOOSTING IN BINARY AND ORDINAL RANDOM EFFECTS MODELS”, J. Comput. Graph. Stat., vol. 22, no. 2, pp. 356–378, Jan. 2013. doi: https://doi.org/10.1080/10618600.2012.694769.

E. Fammaldo and M. Lestari, “GRADIENT BOOSTING TREES UNTUK PEMODELAN DAN PREDIKSI BIAYA KERUGIAN ASURANSI MOBIL”, no. 01, pp. 634–642, 2024.

Y. Yang, W. Qian, and H. Zou, “A BOOSTED TWEEDIE COMPOUND POISSON MODEL FOR INSURANCE PREMIUM”, arXiv:1508.06378v2 [stat.ME], p. 11, Aug. 2016. doi: https://doi.org/10.1080/07350015.2016.1200981.

Badan Pusat Statistik, “HASIL SENSUS PENDUDUK 2020”, in Statistik Demografi Indonesia, Badan Pusat Statistik, 2025.

Kementrian Kesehatan RI, Badan Pusat Statistik RI, and USAID, SURVEI DEMOGRAFI DAN KESEHATAN INDONESIA TAHUN 2017. 2018. [Online]. Available: https://ia802800.us.archive.org/30/items/LaporanSDKI2017/Laporan SDKI 2017.pdf

G. Willame, J. Trufin, and M. Denuit, “BOOSTED POISSON REGRESSION TREES: A GUIDE TO THE BT PACKAGE IN R”, Ann. Actuar. Sci., vol. 18, no. 3, pp. 605–625, 2024. doi: https://doi.org/10.1017/S174849952300026X.

F. Hadiji, A. Molina, S. Natarajan, and K. Kersting, “POISSON DEPENDENCY NETWORKS: GRADIENT BOOSTED MODELS FOR MULTIVARIATE COUNT DATA”, Mach. Learn., vol. 100, no. 2–3, pp. 477–507, 2015. doi: https://doi.org/10.1007/s10994-015-5506-z.

G. Gao, H. Wang, and M. V. Wüthrich, “BOOSTING POISSON REGRESSION MODELS WITH TELEMATICS CAR DRIVING DATA”, Mach. Learn., vol. 111, no. 1, pp. 243–272, 2022. doi: https://doi.org/10.1007/s10994-021-05957-0.

L. Breiman, “ARCING CLASSIFIERS”, Ann. Stat., vol. 26, no. 3, pp. 801–824, Jun. 1998, [Online]. Available: http://www.jstor.org/stable/120055. doi: https://doi.org/10.1214/aos/1024691079

J. H. Friedman, “GREEDY FUNCTION APPROXIMATION: A GRADIENT BOOSTING MACHINE”, Ann. Stat., vol. 29, no. 5, pp. 1189–1232, 2001, [Online]. Available: http://www.jstor.org/stable/2699986?origin=JSTOR-pdf. doi: https://doi.org/10.1214/aos/1013203451

P. Bühlmann and B. Yu, “BOOSTING WITH THE L2 LOSS: REGRESSION AND CLASSIFICATION”, J. Am. Stat. Assoc., vol. 98, no. 462, pp. 324–339, 2003. doi: https://doi.org/10.1198/016214503000125.

Published
2025-11-24
How to Cite
[1]
I. Wulandari, K. A. Notodiputro, B. Sartono, A. Fitrianto, and A. Kurnia, “POISSON MIXED MODELS WITH A BOOSTING APPROACH FOR THE ANALYSIS OF COUNT DATA”, BAREKENG: J. Math. & App., vol. 20, no. 1, pp. 0815-0828, Nov. 2025.