APPLICATION OF DIFFERENTIAL TRANSFORMATION METHOD FOR SOLVING HIV MODEL WITH ANTI-VIRAL TREATMENT

  • Esther Y. Bunga Universitas Nusa Cendana
  • Meksianis Z. Ndii Universitas Nusa Cendana
Keywords: DTM, Numerical methods, HIV, Model

Abstract

Mathematical models have been widely used to understand complex phenomena. Generally, the model is in the form of system of differential equations. However, when the model becomes complex, analytical solutions are not easily used and hence a numerical approach has been used. A number of numerical schemes such as Euler, Runge-Kutta, and Finite Difference Scheme are generally used. There are also alternative numerical methods that can be used to solve system of differential equations such as the nonstandard finite difference scheme (NSFDS), the Adomian decomposition method (ADM), Variation iteration method (VIM), and the differential transformation method (DTM). In this paper, we apply the differential transformation method (DTM)  to solve system of differential equations. The DTM is semi-analytical numerical technique to solve the system of differential equations and provides an iterative procedure to obtain the power series of the solution in terms of initial value parameters. In this paper, we present a mathematical model of HIV with antiviral treatment and construct a numerical scheme based on the differential transformation method (DTM) for solving the model. The results are compared to that of Runge-Kutta method. We find a good agreement of the DTM and the Runge-Kutta method for smaller time step but it fails in the large time step

Downloads

Download data is not yet available.

References

T. Bakary, S. Boureima, and T. Sado, “A mathematical model of malaria transmission in a periodic environment,†Journal of Biological Dynamics, vol. 12, no. 1, pp. 400–432, Jan. 2018, doi: 10.1080/17513758.2018.1468935.

M. Z. Ndii, E. Carnia, and A. K. Supriatna, “Mathematical Models for the Spread of Rumors: A Review,†in Issues and Trends in Interdisciplinary Behavior and Social Science, F. L. Gaol, F. Hutagalung, and F. P. Chew, Eds. CRC Press, 2018, pp. 266–290.

M. Z. Ndii, Z. Amarti, E. D. Wiraningsih, and A. K. Supriatna, “Rabies epidemic model with uncertainty in parameters: crisp and fuzzy approaches,†IOP Conference Series: Materials Science and Engineering, vol. 332, no. 1, p. 012031, 2018.

N. Anggriani, H. Tasman, M. Z. Ndii, A. K. Supriatna, E. Soewono, and E. Siregar, “The effect of reinfection with the same serotype on dengue transmission dynamics,†Applied Mathematics and Computation, vol. 349, pp. 62–80, 2019, doi: https://doi.org/10.1016/j.amc.2018.12.022.

J. Yang, C. Modnak, and J. Wang, “Dynamical analysis and optimal control simulation for an age-structured cholera transmission model,†Journal of the Franklin Institute, vol. 356, no. 15, pp. 8438–8467, 2019, doi: https://doi.org/10.1016/j.jfranklin.2019.08.016.

M. Z. Ndii, F. R. Berkanis, D. Tambaru, M. Lobo, Ariyanto, and B. S. Djahi, “Optimal control strategy for the effects of hard water consumption on kidney-related diseases,†BMC Research Notes, vol. 13, no. 1, p. 201, Apr. 2020, doi: 10.1186/s13104-020-05043-z.

D. Tambaru, B. S. Djahi, and M. Z. Ndii, “The effects of hard water consumption on kidney function: Insights from mathematical modelling,†AIP Conference Proceedings, vol. 1937, no. 1, p. 020020, 2018, doi: 10.1063/1.5026092.

R. U. Hurint, M. Z. Ndii, and M. Lobo, “Analisis sensitivitas dari model epidemi SEIR,†Natural Science: Journal of Science and Technology, vol. 6, no. 1, pp. 22–28, 2017.

M. A. Nowak and C. R. M. Bangham, “Population Dynamics of Immune Responses to Persistent Viruses,†Science, vol. 272, no. 5258, pp. 74–79, 1996, doi: 10.1126/science.272.5258.74.

S. Zibaei and M. Namjoo, “A nonstandard finite difference scheme for solving‎ ‎fractional-order model of HIV-1 infection of‎ ‎CD4^{+} t-cells,†Iranian Journal of Mathematical Chemistry, vol. 6, no. 2, pp. 169–184, 2015, doi: 10.22052/ijmc.2015.10843.

D. Baleanu, H. Mohammadi, and S. Rezapour, “Analysis of the model of HIV-1 infection of CD4+$CD4^{+}$ T-cell with a new approach of fractional derivative,†Advances in Difference Equations, vol. 2020, no. 1, p. 71, Feb. 2020, doi: 10.1186/s13662-020-02544-w.

M. Y. Ongun and İ. Turhan, “A Numerical Comparison for a Discrete HIV Infection of CD4+ T-Cell Model Derived from Nonstandard Numerical Scheme,†Journal of Applied Mathematics, vol. 2013, no. 375094, pp. 1–9, 2013, doi: 10.1155/2013/375094.

M. Y. Ongun, “The Laplace Adomian Decomposition Method for solving a model for HIV infection of CD4+T cells,†Mathematical and Computer Modelling, vol. 53, no. 5, pp. 597–603, Mar. 2011, doi: 10.1016/j.mcm.2010.09.009.

A. L. Hill, D. I. S. Rosenbloom, M. A. Nowak, and R. F. Siliciano, “Insight into treatment of HIV infection from viral dynamics models,†Immunological Reviews, vol. 285, no. 1, pp. 9–25, 2018, doi: 10.1111/imr.12698.

P. K. Roy, Mathematical Models for Therapeutic Approaches to Control HIV Disease Transmission. Springer Singapore, 2015.

X. Zhou, X. Song, and X. Shi, “A differential equation model of HIV infection of CD4+ T-cells with cure rate,†Journal of Mathematical Analysis and Applications, vol. 342, no. 2, pp. 1342–1355, Jun. 2008, doi: 10.1016/j.jmaa.2008.01.008.

A. J. Arenas, G. González-Parra, and B. M. Chen-Charpentier, “Dynamical analysis of the transmission of seasonal diseases using the differential transformation method,†Mathematical and Computer Modelling, vol. 50, no. 5, pp. 765–776, Sep. 2009, doi: 10.1016/j.mcm.2009.05.005.

L. Jodar, R. J. Villanueva, A. J. Arenas, and G. C. Gonzalez, “Nonstandard numerical methods for a mathematical model for influenza disease,†Mathematics and Computers in Simulation, vol. 79, no. 3, pp. 622–633, 2008, doi: https://doi.org/10.1016/j.matcom.2008.04.008.

M. Z. Ndii, N. Anggriani, and A. K. Supriatna, “Application of differential transformation method for solving dengue transmission mathematical model,†Symposium on Biomathematics. AIP Conference Proceeding, 2018.

Z. M. Odibat, “Differential transform method for solving Volterra integral equation with separable kernels,†Mathematical and Computer Modelling, vol. 48, no. 7, pp. 1144–1149, Oct. 2008, doi: 10.1016/j.mcm.2007.12.022.

E. Bunga, J. Pahnael, M. Lobo, and M. Z. Ndii, “Konstruksi Metode Transformasi Diferensial Multi-Step (Multi-Step Differential Transform Method) untuk Model SEIRS Autonomous dan Nonautonomous,†Matematika Integratif, vol. 16, no. 1, pp. 53–59, 2020.

B. Dhar and P. K. Gupta, “Numerical Solution of Tumor-Immune Model with Targeted Chemotherapy by Multi Step Differential Transformation Method,†in Intelligent Techniques and Applications in Science and Technology, Cham, 2020, pp. 404–411.

T. Allahviranloo, N. A. Kiani, and N. Motamedi, “Solving fuzzy differential equations by differential transformation method,†Information Sciences, vol. 179, no. 7, pp. 956–966, Mar. 2009, doi: 10.1016/j.ins.2008.11.016.

H. F. Ganji, M. Jouya, S. A. Mirhosseini-Amiri, and D. D. Ganji, “Traveling wave solution by differential transformation method and reduced differential transformation method,†Alexandria Engineering Journal, vol. 55, no. 3, pp. 2985–2994, Sep. 2016, doi: 10.1016/j.aej.2016.04.012.

M. Z. Ndii, N. Anggriani, and A. K. Supriatna, “Comparison of the differential transformation method and non standard finite difference scheme for solving plant disease mathematical model,†Communication in Biomathematical sciences, vol. 1, no. 2, pp. 110–121, 2018.

S. Ghafoori, M. Motevalli, M. G. Nejad, F. Shakeri, D. D. Ganji, and M. Jalaal, “Efficiency of differential transformation method for nonlinear oscillation: Comparison with HPM and VIM,†Current Applied Physics, vol. 11, no. 4, pp. 965–971, Jul. 2011, doi: 10.1016/j.cap.2010.12.018.

I. H. Abdel-Halim Hassan, “Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems,†Chaos, Solitons & Fractals, vol. 36, no. 1, pp. 53–65, Apr. 2008, doi: 10.1016/j.chaos.2006.06.040.

R. E. Mickens, Nonstandard finite difference models of differential equations. world scientific, 1994.

R. E. Mickens, “Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition,†Numerical Methods for Partial Differential Equations, vol. 23, no. 3, pp. 672–691, 2007.

R. E. Mickens, “Nonstandard Finite Difference Methods,†in Advances in the Applications of Nonstandard Finite Difference Schemes, World Scientific, 2012, pp. 1–9.

A. Suryanto, W. M. Kusumawinahyu, I. Darti, and I. Yanti, “Dynamically consistent discrete epidemic model with modified saturated incidence rate,†Computational and Applied Mathematics, vol. 32, pp. 373–383, 2013, doi: https://doi.org/10.1007/s40314-013-0026-6.

Published
2020-10-10
How to Cite
[1]
E. Bunga and M. Ndii, “APPLICATION OF DIFFERENTIAL TRANSFORMATION METHOD FOR SOLVING HIV MODEL WITH ANTI-VIRAL TREATMENT”, BAREKENG: J. Math. & App., vol. 14, no. 3, pp. 378-388, Oct. 2020.