PREDIKSI PENCURIAN SEPEDA MOTOR MENGGUNAKAN MODEL TIME SERIES (STUDI KASUS: POLRES KOTABUMI LAMPUNG UTARA)
Abstract
Crime is a crime that violates the laws of a country or violates the norms in force in society. Theft is a form of crime. The impact of theft is a feeling of insecurity, fear and insecurity. One model used to predict the number of theft cases is the time series model. A time series model is a set of values ​​observed in an activity, event, or event where data is then arranged in chronological order. Generally, in intervals of the same length. This study aims to model the data of criminal acts of motorcycle theft in North Lampung Police with Autoregressive (AR), Moving Average (MA), and Autoregressive Integrated Moving Average (ARIMA) models. Furthermore, the best models will be used for forecasting for the next 6 months. The results of the AR model (1), AR (3) model, MA model (1), ARIMA (1,1,1), and ARIMA model (3,1,1). The MA model (1) has a significant parameter coefficient, fulfills diagnostic tests and has the smallest RMSE and AIC values ​​with an RMSE value of 6.5612926 and an AIC value of 394.82. The predicted results of the MA model (1) for the next 6 months tend to be horizontally different from the original data which tends to decrease.
Downloads
References
K. Kartini, Patologi Sosial, 1st ed. Jakarta: Raja Grafindo Persada, 1999.
D. Anggraini and Y. Wijaya, “Obligasi Bencana Alam Dengan Suku Bunga Stokastik Dan Pendekatan Campuran,†Al-Jabar J. Pendidik. Mat., vol. 7, no. 1, pp. 49–62, Jun. 2016, doi: 10.24042/ajpm.v7i1.130.
I. Yusnita, R. Masykur, and S. Suherman, “Modifikasi Model Pembelajaran Gerlach dan Ely Melalui Integrasi Nilai-Nilai Keislaman Sebagai Upaya Meningkatkan Kemampuan Representasi Matematis,†Al-Jabar J. Pendidik. Mat., vol. 7, no. 1, 2016.
N. L. K. D. Murniati, Indiwarti, and A. A. Rohmawati, “Implemetasi Model Autoregressive (AR) Dan Autoregressive Conditional Heteroskedasticity (ARCH) Untuk Memprediksi Harga Emas,†Ind. J. Comput., vol. 2, no. 2, pp. 29–44, Sep. 2018.
W. W. S. Wei, Ed., Time Series Analysis Univarite and Multivariate Methods, Second. Temple University: Publication Data, 2006.
A. Nurlifa and S. Kusumadewi, “Sistem Peramalan Jumlah Penjualan Menggunakan Metode Moving Average pada Rumah Jilbab Zaky,†J. Inovtek Polbeng, vol. 2, no. 1, 2017.
A. Kumila, B. Sholihah, E. Evizia, N. Safitri, and S. Fitri, “Perbandingan Metode Moving Average dan Metode Naïve Dalam Peramalan Data Kemiskinan,†J. Teor. dan Apl. Mat., vol. 3, no. 1, pp. 65–73, Apr. 2019, doi: 10.31764/jtam.v3i1.764.
A. P. Desvina and M. Syahfitra, “Aplikasi Metode Box-Jenkins dalam Memprediksi Pertumbuhan Perdagangan Luar Negeri Provinsi Riau,†J. Sains Mat. dan Stat., vol. 2, no. 2, p. 9, 2016.
Wardono, S. Mariani, and Y. Fathonah, “Implementation of Autoregressive Integrated Moving Average (ARIMA) Methods for Forecasting Many Applicants Making Driver’s License a with Eviews 7 in Pati Indonesia,†Wardono, Scolastika Marian. dan Yuliyana Fathonah, “Implementation Autoregressive Integr. Mov. Aver. Methods Forecast. Many Appl. Mak. Driver’s Licens. a with Eviews 7 Pati Indones. J. Theor. Apllied , 2017.
Mutia Indah Sari, “PEMODELAN HARGA SAHAM MENGGUNAKAN GENERALISASI PROSES WIENER DAN MODEL ARIMA,†PhD Thesis, Institut Pertanian Bogor, Bogor, 2011.
S. H. A. Salmon, N. Nainggolan, and D. Hatidja, “Pemodelan ARIMA Dalam Prediksi Penumpang Pesawat Terbang Pada Bandara Internasional Sam Ratulangi Manado,†JdC, vol. 4, no. 1, p. 9, 2015.
S. Makridakis, Steven C. Wheelwright, and Victor E. McGee, Metode dan Aplikasi Peramalan Jilid 1, Kedua. Jakarta: Erlangga, 1995.
K. Mendome, N. Nainggolan, and J. Kekenusa, “Penerapan Model ARIMA dalam Memprediksi Jumlah Tindak Kriminalitas di Wilayah POLRESTA Manado Provinsi Sulawesi UtaraKlorofil,†J. MIPA UNSRAT ONLINE, vol. 5, no. 2, pp. 113–116, Oct. 2016.
A. A. Nugroho, R. W. Y. Putra, F. G. Putra, and M. Syazali, “Pengembangan Blog Sebagai Media Pembelajaran Matematika,†Al-Jabar J. Pendidik. Mat., vol. 8, no. 2, 2017.
R. S. Faustina, “Model HYBRID ARIMA-GARCH untuk Estimasi Volatilitas Harga Emas menggunakan Software R,†Universitas Negeri Semarang, 2016.
R. Monica, Suyono, and V. M. Santi, “roses Autoregressive Conditional Heteroscedasticity dengan Dugaan Variansi Inflasi Indonesia,†J. Stat. Dan Apl. 1, no. 1, 2017.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.