METODE ALTERNATIF DALAM MENENTUKAN SOLUSI PARTIKULAR PERSAMAAN EULER-CAUCHY

  • Mariatul Kiftiah Prodi Matematika, FMIPA, Universitas Tanjungpura
  • Yudhi Yudhi Prodi Matematika, FMIPA, Universitas Tanjungpura
  • Alvi Yanitami Prodi Matematika, FMIPA, Universitas Tanjungpura
Keywords: Euler-Cauchy, characteristics equation, Toeplitz matrix, multiplicity

Abstract

Euler-Cauchy equation is the typical example of a linear ordinary differential equation with variable coefficients. In this paper, we apply the alternative method to determine the particular solution of Euler-Cauchy nonhomogenous with polynomial and natural logarithm form. An explicit formula of the particular solution is derived from the use of an upper triangular Toeplitz matrix. The study showed that this method could be finding the particular solution for the Euler-Cauchy equation

Downloads

Download data is not yet available.

References

W.E. Boyce, R.C. DiPrima and D.B. Meade. Elementary Differential Equations and Boundary Value Problems. Eleventh Edition. New York: John Willey & Sons Inc, 2017.

A. Ü. Keskinv. Ordinary Differential Equations for Engineers: Problems with MATLAB Solutions. Switzerland: Springer International Publishing, Year, 2019.

D. D. Leon, Using Undetermined Coefficients to Solve Certain Classes of Variable-Coefficient Equations. The American Mathematical Monthly. vol. 122, no. 3, pp. 246-255, 2015.

P. Rodríguez-Vellando. …and so Euler discovered Differential Equations. Found Sci vol. 24, no. 2, pp. 343–374, 2019.

I. Faisal and M. Darus. Application of nonhomogenous Cauchy-Euler differential equation for certain class of analytic functions. Hacettepe Journal of Mathematics and Statistics vol. 43, no. 3, pp. 375 – 382, 2014.

I. Cho1, Hj. Kim. Several Representations of The Euler-Cauchy Equation with Respect to Integral Transforms. Int. J. of Pure & Appl. vol 87, no. 3, pp. 487-495, 2013.

Hj. Kim. The solution of Euler-Cauchy equation expressed by differential operator using Laplace transform, Int. J. of Pure & Appl. Math., 84, 2013.

Bm. Ghil and Hj. Kim. The solution of Euler-Cauchy equation by using Laplace transform. Int. J. Math. Anal. vol. 9, no. 53, pp. 2611–2618, 2015.

P. Haarsa and S. Pothat. On Cauchy-Euler Equation with a Bulge Function by Using Laplace Transform. Applied Mathematical Sciences, vol. 9, no. 13, 623 – 627, 2015.

Hj. Kim. The Time Shifting Theorem and The Convolution for Elzaki Transform. Int. J. of Pure & Appl. vol. 87 n.o. 2, pp. 261-271, 2013.

D. De Leon. Euler-Cauchy Using Undetermined Coefficients. The College Mathematics Journal. vol. 41, no. 3, pp. 235-237, 2010.

M. Alesemi, M. A. El-Moneam, B. S. Bader, E. S. Aly. The of Particular Solutions Some Types of Euler-Cauchy ODE Using the Differential Transform Method. J. Nonlinear Sci. Appl., vol. 12, pp. 146–151. 2019.

P. Haarsa and S. Pothat. The Reduction of Order on Cauchy-Euler Equation with a Bulge Function. Applied Mathematical Sciences, vol. 9, no. 23, pp. 1139 – 1143, 2015.

A.H. Sabuwala and D.De Leon. Particular Solution to the Euler-Cauchy Equation with polynomial non-homogeneities. Discrete and Continuous Dynamical Systems, 8th AIMS Conference, Supplement 2, pp. 1271-1278, 2011.

Apriliandi, M. Kiftiah, Yudhi. Generalisasi Teorema Sabuwala-Leon Pada Persamaan Euler-Cauchy Tak Homogen Polinomial, BIMASTER, vol 7, no. 2, pp. 149-152, 2018.

J. Jia and T. Sogabe. On Particular Solution of Ordinary Differential Equations with Constant Coefficient. Applied Mathematics and Computation, vol. 219, pp. 6761-6767, 2013.

Published
2021-03-01
How to Cite
[1]
M. Kiftiah, Y. Yudhi, and A. Yanitami, “METODE ALTERNATIF DALAM MENENTUKAN SOLUSI PARTIKULAR PERSAMAAN EULER-CAUCHY”, BAREKENG: J. Math. & App., vol. 15, no. 1, pp. 085-094, Mar. 2021.