ALGORITMA UNTUK MENENTUKAN KEKOPOSITIFAN MATRIKS SIMETRIS BERUKURAN 𝒏 = πŸ‘, πŸ’, πŸ“

  • Berny P. Tomasouw Jurusan Matematika FMIPA Universitas Pattimura
Keywords: Algoritma, matriks kopositif, matriks simetris.

Abstract

Matriks kopositif merupakan matriks simetris yang memenuhi sifat tertentu. Matriks ini dapat digunakan dalam menyelesaikan masalah pemrograman kuadratik, masalah kombinatorik dan persamaan diferensial. Dalam penelitian ini, akan dibentuk beberapa algoritma untuk memeriksa kekopositifan suatu matriks simetris yang berukuran n = 3, n = 4 dan n = 5.

Downloads

Download data is not yet available.

References

[1] L. D. Baumert, β€œExtreme Copositive Quadratic Forms,” Pacific J. Math., vol. 19, pp. 197-204, 1966.
[2] R. W. Farebrother, β€œNecessary and Sufficient Conditions for a Quadratic Form to be Positive whenever a Set of Linear Constraints is Satisfied,” Linear Algebra Appl., vol. 16, pp. 39-42, 1977.
[3] J. W. Gaddum, β€œLinear Inequalities and Quadratic Forms,” Pasific J. Math., vol. 8, pp. 411-414, 1958.
[4] D. H. Jacobson, Extentions of Linear Quadratic Control, Optimization, and Matrix Theory, New York: Academic, 1977.
[5] T. S. Motzkin, β€œCopositive Quadratic Forms,” National Bureau of Standards Report, pp. 11-22, 1952.
[6] L. E. Anderson, G. Chang dan T. Elfying, β€œCriteria for Copositive Matrices using Simplices and Barycentric Coordinates,” Linear Algebra Appl., vol. 220, pp. 9-30, 1995.
[7] K. P. Hadeler, β€œOn Copositive Matrices,” Linear Algebra Appl., vol. 49, pp. 78-89, 1983.
Published
2018-02-01
How to Cite
[1]
B. Tomasouw, β€œALGORITMA UNTUK MENENTUKAN KEKOPOSITIFAN MATRIKS SIMETRIS BERUKURAN 𝒏 = πŸ‘, πŸ’, πŸ“β€, BAREKENG, vol. 9, no. 2, pp. 89-96, Feb. 2018.