MATRIKS ATAS RING DERET PANGKAT TERGENERALISASI MIRING

  • Siti Rugayah Jurusan Matematika FMIPA Universitas Lampung
  • Ahmad Faisol Jurusan Matematika FMIPA Universitas Lampung
  • Fitriani Fitriani Jurusan Matematika FMIPA Universitas Lampung
Keywords: Artinian, narrow, matrices over a ring, strictly ordered monoid, skew generalized power series ring

Abstract

Let R be a ring with unit elements,  strictly ordered monoids, and  a monoid homomorphism. Formed , which is a set of all functions from S to R with  are Artin and narrow. With the operation of the sum of functions and convolution multiplication,  is a ring, from now on referred to as the Skew Generalized Power Series Ring (SGPSR). In this paper, the set of all matrices over SGPSR  will be constructed. Furthermore, it will be shown that this set is a ring with the addition and multiplication matrix operations. Moreover, we will construct the ideal of ring matrix over SGPSR and investigate this ideal's properties.

Downloads

Download data is not yet available.

Author Biographies

Ahmad Faisol, Jurusan Matematika FMIPA Universitas Lampung

Jurusan Matematika FMIPA Universitas Lampung

Fitriani Fitriani, Jurusan Matematika FMIPA Universitas Lampung

Jurusan Matematika FMIPA Universitas Lampung 

References

H. Anton and C. Rorres, Elementary Linear Algebra: Applications Version, 9th Edition. New Jersey, 2005.

W. C. Brown, Matrices Over Commutative Rings. New York: Marcel Dekker Inc., 1993.

D. S. Dummit and R. M. Foote, Abstract Algebra, Third Edit. John Wiley and Sons, Inc., 2004.

P. Ribenboim, “Generalized Power Series Rings,†in Lattices, Semigroups, and Universal Algebra, 1990.

R. Gilmer, Commutative Semigroup Rings. Chicago and London: The University of Chicago, 1984.

T. W. Hungerford, Algebra. New York: Springer-Verlag New York, Inc., 1974.

W. A. Adkins and S. H. Weintraub, Algebra: An Approach via Module Theory. New York: Springer-Verlag, New York, Inc., 1992.

G. A. Elliott and P. Ribenboim, “Fields of generalized power series,†Arch. der Math., vol. 54, no. 4, pp. 365–371, 1990.

P. Ribenboim, “Rings of Generalized Power Series: Nilpotent Elements,†Abh. Math. Sem. Univ. Hambg., vol. 61, pp. 15–33, 1991.

P. Ribenboim, “Noetherian Rings of Generalized Power Series,†J. Pure Appl. Algebr., vol. 79, no. 3, pp. 293–312, 1992.

A. Benhissi and P. Ribenboim, “Ordered Rings of Generalized Power Series,†in Ordered Algebraic Structures, 1993.

P. Ribenboim, “Rings of Generalized Power Series II: Units and Zero-Divisors,†J. Algebr., vol. 168, pp. 71–89, 1994.

P. Ribenboim, “Special Properties of Generalized Power Series,†J. Algebr., vol. 173, pp. 566–586, 1995.

P. Ribenboim, “Semisimple Rings and Von Neumann Regular Rings of Generalized Power Series,†J. Algebr., vol. 198, no. 2, pp. 327–338, 1997.

K. Varadarajan, “Generalized power series modules,†Commun. Algebr., vol. 29, no. 3, pp. 1281–1294, 2001.

K. Varadarajan, “Noetherian generalized power series rings and modules,†Commun. Algebr., vol. 29, no. 1, pp. 245–251, 2001.

A. Faisol, B. Surodjo, and S. Wahyuni, “T[[S]]-Noetherian Property on Generalized Power Series Modules,†JP J. Algebr. Number Theory Appl., vol. 43, no. 1, pp. 1–12, 2019.

A. Faisol, B. Surodjo, and S. Wahyuni, “The Sufficient Conditions for R[X]-module M[X] to be S[X]-Noetherian,†vol. 5, no. 1, pp. 1–13, 2019.

A. Faisol, B. Surodjo, and S. Wahyuni, “The Relation between Almost Noetherian Module, Almost Finitely Generated Module and T-Noetherian Module,†in Journal of Physics: Conference Series, Sep. 2019, vol. 1306, no. 1.

R. Mazurek and M. Ziembowski, “On von Neumann regular rings of skew generalized power series,†Commun. Algebr., vol. 36, no. 5, pp. 1855–1868, 2008.

R. Mazurek and M. Ziembowski, “The ascending chain condition for principal left or right ideals of skew generalized power series rings,†J. Algebr., vol. 322, no. 4, pp. 983–994, 2009.

R. Mazurek and M. Ziembowski, “Weak dimension and right distributivity of skew generalized power series rings,†J. Math. Soc. Japan, vol. 62, no. 4, pp. 1093–1112, 2010.

R. Mazurek, “Rota-Baxter operators on skew generalized power series rings,†J. Algebr. its Appl., vol. 13, no. 7, pp. 1–10, 2014.

R. Mazurek, “Left principally quasi-Baer and left APP-rings of skew generalized power series,†J. Algebr. its Appl., vol. 14, no. 3, pp. 1–36, 2015.

R. Mazurek and K. Paykan, “Simplicity of skew generalized power series rings,†New York J. Math., vol. 23, pp. 1273–1293, 2017.

A. Faisol, “Homomorfisam Ring Deret Pangkat Teritlak Miring,†J. Sains MIPA, vol. 15, no. 2, pp. 119–124, 2009.

A. Faisol, “Pembentukan Ring Faktor Pada Ring Deret Pangkat Teritlak Miring,†in Prosiding Semirata FMIPA Univerisitas Lampung, 2013, pp. 1–5.

A. Faisol, “Endomorfisma Rigid dan Compatible pada Ring Deret Pangkat Tergeneralisasi Miring,†J. Mat., vol. 17, no. 2, pp. 45–49, 2014.

A. Faisol, B. Surodjo, and S. Wahyuni, “Modul Deret Pangkat Tergeneralisasi Skew T-Noether,†in Prosiding Seminar Nasional Aljabar, Penerapan dan Pembelajarannya, 2016, pp. 95–100.

A. Faisol, B. Surodjo, and S. Wahyuni, “The Impact of the Monoid Homomorphism on The Structure of Skew Generalized Power Series Rings,†Far East J. Math. Sci., vol. 103, no. 7, pp. 1215–1227, 2018.

A. Faisol and Fitriani, “The Sufficient Conditions for Skew Generalized Power Series Module M[[S,w]] to be T[[S,w]]-Noetherian R[[S,w]]-module,†Al-Jabar J. Pendidik. Mat., vol. 10, no. 2, pp. 285–292, 2019.

R. Mazurek and M. Ziembowski, “Uniserial rings of skew generalized power series,†J. Algebr., vol. 318, no. 2, pp. 737–764, 2007.

Published
2021-03-01
How to Cite
[1]
S. Rugayah, A. Faisol, and F. Fitriani, “MATRIKS ATAS RING DERET PANGKAT TERGENERALISASI MIRING”, BAREKENG: J. Math. & App., vol. 15, no. 1, pp. 157-166, Mar. 2021.