MATRIKS ATAS RING DERET PANGKAT TERGENERALISASI MIRING
Abstract
Let R be a ring with unit elements, strictly ordered monoids, and a monoid homomorphism. Formed , which is a set of all functions from S to R with are Artin and narrow. With the operation of the sum of functions and convolution multiplication, is a ring, from now on referred to as the Skew Generalized Power Series Ring (SGPSR). In this paper, the set of all matrices over SGPSR will be constructed. Furthermore, it will be shown that this set is a ring with the addition and multiplication matrix operations. Moreover, we will construct the ideal of ring matrix over SGPSR and investigate this ideal's properties.
Downloads
References
H. Anton and C. Rorres, Elementary Linear Algebra: Applications Version, 9th Edition. New Jersey, 2005.
W. C. Brown, Matrices Over Commutative Rings. New York: Marcel Dekker Inc., 1993.
D. S. Dummit and R. M. Foote, Abstract Algebra, Third Edit. John Wiley and Sons, Inc., 2004.
P. Ribenboim, “Generalized Power Series Rings,†in Lattices, Semigroups, and Universal Algebra, 1990.
R. Gilmer, Commutative Semigroup Rings. Chicago and London: The University of Chicago, 1984.
T. W. Hungerford, Algebra. New York: Springer-Verlag New York, Inc., 1974.
W. A. Adkins and S. H. Weintraub, Algebra: An Approach via Module Theory. New York: Springer-Verlag, New York, Inc., 1992.
G. A. Elliott and P. Ribenboim, “Fields of generalized power series,†Arch. der Math., vol. 54, no. 4, pp. 365–371, 1990.
P. Ribenboim, “Rings of Generalized Power Series: Nilpotent Elements,†Abh. Math. Sem. Univ. Hambg., vol. 61, pp. 15–33, 1991.
P. Ribenboim, “Noetherian Rings of Generalized Power Series,†J. Pure Appl. Algebr., vol. 79, no. 3, pp. 293–312, 1992.
A. Benhissi and P. Ribenboim, “Ordered Rings of Generalized Power Series,†in Ordered Algebraic Structures, 1993.
P. Ribenboim, “Rings of Generalized Power Series II: Units and Zero-Divisors,†J. Algebr., vol. 168, pp. 71–89, 1994.
P. Ribenboim, “Special Properties of Generalized Power Series,†J. Algebr., vol. 173, pp. 566–586, 1995.
P. Ribenboim, “Semisimple Rings and Von Neumann Regular Rings of Generalized Power Series,†J. Algebr., vol. 198, no. 2, pp. 327–338, 1997.
K. Varadarajan, “Generalized power series modules,†Commun. Algebr., vol. 29, no. 3, pp. 1281–1294, 2001.
K. Varadarajan, “Noetherian generalized power series rings and modules,†Commun. Algebr., vol. 29, no. 1, pp. 245–251, 2001.
A. Faisol, B. Surodjo, and S. Wahyuni, “T[[S]]-Noetherian Property on Generalized Power Series Modules,†JP J. Algebr. Number Theory Appl., vol. 43, no. 1, pp. 1–12, 2019.
A. Faisol, B. Surodjo, and S. Wahyuni, “The Sufficient Conditions for R[X]-module M[X] to be S[X]-Noetherian,†vol. 5, no. 1, pp. 1–13, 2019.
A. Faisol, B. Surodjo, and S. Wahyuni, “The Relation between Almost Noetherian Module, Almost Finitely Generated Module and T-Noetherian Module,†in Journal of Physics: Conference Series, Sep. 2019, vol. 1306, no. 1.
R. Mazurek and M. Ziembowski, “On von Neumann regular rings of skew generalized power series,†Commun. Algebr., vol. 36, no. 5, pp. 1855–1868, 2008.
R. Mazurek and M. Ziembowski, “The ascending chain condition for principal left or right ideals of skew generalized power series rings,†J. Algebr., vol. 322, no. 4, pp. 983–994, 2009.
R. Mazurek and M. Ziembowski, “Weak dimension and right distributivity of skew generalized power series rings,†J. Math. Soc. Japan, vol. 62, no. 4, pp. 1093–1112, 2010.
R. Mazurek, “Rota-Baxter operators on skew generalized power series rings,†J. Algebr. its Appl., vol. 13, no. 7, pp. 1–10, 2014.
R. Mazurek, “Left principally quasi-Baer and left APP-rings of skew generalized power series,†J. Algebr. its Appl., vol. 14, no. 3, pp. 1–36, 2015.
R. Mazurek and K. Paykan, “Simplicity of skew generalized power series rings,†New York J. Math., vol. 23, pp. 1273–1293, 2017.
A. Faisol, “Homomorfisam Ring Deret Pangkat Teritlak Miring,†J. Sains MIPA, vol. 15, no. 2, pp. 119–124, 2009.
A. Faisol, “Pembentukan Ring Faktor Pada Ring Deret Pangkat Teritlak Miring,†in Prosiding Semirata FMIPA Univerisitas Lampung, 2013, pp. 1–5.
A. Faisol, “Endomorfisma Rigid dan Compatible pada Ring Deret Pangkat Tergeneralisasi Miring,†J. Mat., vol. 17, no. 2, pp. 45–49, 2014.
A. Faisol, B. Surodjo, and S. Wahyuni, “Modul Deret Pangkat Tergeneralisasi Skew T-Noether,†in Prosiding Seminar Nasional Aljabar, Penerapan dan Pembelajarannya, 2016, pp. 95–100.
A. Faisol, B. Surodjo, and S. Wahyuni, “The Impact of the Monoid Homomorphism on The Structure of Skew Generalized Power Series Rings,†Far East J. Math. Sci., vol. 103, no. 7, pp. 1215–1227, 2018.
A. Faisol and Fitriani, “The Sufficient Conditions for Skew Generalized Power Series Module M[[S,w]] to be T[[S,w]]-Noetherian R[[S,w]]-module,†Al-Jabar J. Pendidik. Mat., vol. 10, no. 2, pp. 285–292, 2019.
R. Mazurek and M. Ziembowski, “Uniserial rings of skew generalized power series,†J. Algebr., vol. 318, no. 2, pp. 737–764, 2007.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.