COMBINATION OF KNN AND PARTICLE SWARM OPTIMIZATION (PSO) ON AIR QUALITY PREDICTION

  • Sugandi Yahdin Mathematics Department, Mathematics and Natural Science Faculty, Universitas Sriwijaya
  • Anita Desiani Mathematics Department, Mathematics and Natural Science Faculty, Universitas Sriwijaya
  • Shania Putri Andhini Mathematics Department, Mathematics and Natural Science Faculty, Universitas Sriwijaya
  • Dian Cahyawati Mathematics Department, Mathematics and Natural Science Faculty, Universitas Sriwijaya
  • Rifkie Primartha Informatics Engineering, Computer Science Faculty, Universitas Sriwijaya
  • Muhammad Arhami Informatics Engineering, Polteknik Negeri Lhokseumawe
  • Ditia Fitri Arinda Nutrition Department, Public Health Faculty, Universitas Sriwijaya
Keywords: air quality, air pollutant index, prediction, k-nearest neighbors, particle swarm optimization

Abstract

The increase in the use of energy sources causes air pollution. The Air Pollutant Index (API) is information about the air quality of a place and at a certain time. API has several parameters, namely SO2, PM10, NO2, O3, and CO. In this study, the KNN method was used to assist categorize air quality. However, all training data were used during the classification process with KNN causes a long prediction process. Another problem with KNN is difficult to determine the optimal value of the K parameter in KNN. The Particle Swarm Optimization (PSO) method can be used for problems on KNN. Therefore, the aim of this study is to predict air quality based on the API by combining the KNN-PSO method. The dataset used is the API dataset for the DKI Jakarta area 2017-2019 totaling 1075 data. The results showed the accuracy for the KNN-PSO method was 98.42% with a precision value of 97.75% and a recall value of 98.13%. To further analyze the results on the combined method, the results of this study were compared with the KNN method only. The results obtained from the KNN method are lower than the KNN-PSO method. So it can be concluded that the KNN-PSO method is great and robust in air quality classification or prediction.

Downloads

Download data is not yet available.

References

J. Ma, J. C. P. Cheng, C. Lin, Y. Tan, and J. Zhang, “Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques,” Atmos. Environ., vol. 214, 2019, doi: 10.1016/j.atmosenv.2019.116885.

H. Maleki, A. Sorooshian, G. Goudarzi, Z. Baboli, Y. Tahmasebi Birgani, and M. Rahmati, “Air pollution prediction by using an artificial neural network model,” Clean Technol. Environ. Policy, vol. 21, 2019, doi: 10.1007/s10098-019-01709-w.

A. Kurniawan, “Pengukuran Parameter Kualitas Udara (Co, No2, So2, O3 dan Pm10) di Bukit Kototabang Berbasis Ispu,” J. Teknosains, vol. 7, no. 1, pp. 1–82, 2018, doi: 10.22146/teknosains.34658.

A. Pandey and A. Jain, “Comparative Analysis of KNN Algorithm using Various Normalization Techniques,” Int. J. Comput. Netw. Inf. Secur., vol. 9, no. 11, pp. 36–42, 2017, doi: 10.5815/ijcnis.2017.11.04.

H. Liu, X. Li, and S. Zhang, “Learning Instance Correlation Functions for Multilabel Classification,” IEEE Trans. Cybern., vol. 47, no. 2, pp. 499–510, 2017, doi: 10.1109/TCYB.2016.2519683.

X. Zhu, X. Li, and S. Zhang, “Block-Row Sparse Multiview Multilabel Learning for Image Classification,” IEEE Trans. Cybern., vol. 46, no. 2, pp. 450–461, 2016, doi: 10.1109/TCYB.2015.2403356.

A. Munter, R. Razif, M. AbuAlhaj, M. Anbar, and S. Nizam, “A Preliminary Performance Evaluation of K-means, KNN and EM Unsupervised Machine Learning Methods for Network Flow Classification,” Int. J. Electr. Comput. Eng., vol. 6, no. 2, p. 778, 2016, doi: 10.11591/ijece.v6i2.8909.

W. Xing and Y. Bei, “Medical Health Big Data Classification Based on KNN Classification Algorithm,” IEEE Access, vol. 8, pp. 28808–28819, 2020, doi: 10.1109/ACCESS.2019.2955754.

L. Xiong and Y. Yao, “Study on an adaptive thermal comfort model with K-nearest-neighbors (KNN) algorithm,” Build. Environ., vol. 202, p. 108026, 2021, doi: https://doi.org/10.1016/j.buildenv.2021.108026.

S. B. Imandoust and M. Bolandraftar, “Application of K-Nearest Neighbor ( KNN ) Approach for Predicting Economic Events : Theoretical Background,” Int. J. Eng. Res. Appl., vol. 3, no. 5, pp. 605–610, 2013.

J. Y. Lee and M. P. Styczynski, “NS-kNN: a modified k-nearest neighbors approach for imputing metabolomics data,” Metabolomics, vol. 14, no. 12, p. 153, 2018, doi: 10.1007/s11306-018-1451-8.

J. Huang et al., “Cross-Validation based K Nearest Neighbor Imputation for Software Quality Datasets: An Empirical Study,” J. Syst. Softw., vol. 132, pp. 226–252, 2017, doi: 10.1016/j.jss.2017.07.012.

Okfalisa, I. Gazalba, Mustakim, and N. G. I. Reza, “Comparative Analysis of K-Nearest Neighbor and Modified K-Nearest Neighbor Algorithm for Data Classification,” Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng., pp. 294–298, 2017, doi: 10.1109/ICITISEE.2017.8285514.

S. Zhang, D. Cheng, Z. Deng, M. Zong, and X. Deng, “A novel kNN algorithm with data-driven k parameter computation,” Pattern Recognit. Lett., vol. 109, pp. 44–54, 2018, doi: https://doi.org/10.1016/j.patrec.2017.09.036.

D. J. O’Neil, “Nearest Neighbor Problem,” in Encyclopedia of GIS, S. Shekhar, H. Xiong, and X. Zhou, Eds. Cham: Springer International Publishing, 2017, pp. 1421–1426.

K. Movagharnejad and N. Vafaei, “A Comparison Between GA and PSO Algorithms in Training ANN to Predict the Refractive Index of Binary Liquid Solutions,” J. Chem. Pet. Eng., no. October, pp. 125–135, 2018, doi: 10.22059/JCHPE.2018.238595.1208.

N. Hasanova, “A Comparative Study of Particle Swarm Optimization and Genetic Algorithm,” Qubahan Acad. J., vol. 1, no. 1, pp. 33–45, 2020, doi: 10.48161/qaj.v1n1a7.

I. Rahman, P. M. Vasant, B. S. M. Singh, and M. Abdullah-Al-Wadud, “On the performance of accelerated particle swarm optimization for charging plug-in hybrid electric vehicles,” Alexandria Eng. J., vol. 55, no. 1, pp. 419–426, 2016, doi: https://doi.org/10.1016/j.aej.2015.11.002.

S. Gambhir, S. K. Malik, and Y. Kumar, “PSO-ANN based diagnostic model for the early detection of dengue disease,” New Horizons Transl. Med., pp. 1–8, 2017, doi: 10.1016/j.nhtm.2017.10.001.

R. Yu, Y. Yang, L. Yang, G. Han, and O. A. Move, “RAQ–A Random Forest Approach for Predicting Air Quality in Urban Sensing System,” Sensors (Switzerland), vol. 16, no. 1, 2016, doi: 10.3390/s16010086.

R. D. Liklikwatil, E. Noersasongko, and C. Supriyanto, “Optimasi K-Nearest Neighbor dengan Particle Swarm Optimization untuk Memprediksi Harga Komoditi Karet,” e-Jurnal JUSITI (Jurnal Sist. Inf. dan Teknol. Informasi), vol. 7, no. 2, pp. 172–182, 2018, doi: 10.36774/jusiti.v7i2.252.

N. Wati, A. Syukur, and A. Z. Fanani, “Prediksi Kelulusan Mahasiswa Menggunakan K-Nearest Neighbour Berbasis Particle Swarm Optimization,” 2015.

W. Yunus, “Algoritma K-Nearest Neighbor Berbasis Particle Swarm Optimization untuk Prediksi Penyakit Ginjal Kronik,” J. Tek. Elektro CosPhi, vol. 2, no. 2, pp. 51–55, 2018.

Y. Lin, L. Zhao, H. Li, and Y. Sun, “Air Quality Forecasting Based on Cloud Model Granulation,” Eurasip J. Wirel. Commun. Netw., vol. 216, pp. 1–10, 2018, doi: 10.1186/s13638-018-1116-3.

C. Zhao and G. Song, “Application of Data Mining to the Analysis of Meteorological Data for Air Quality Prediction: A Case Study in Shenyang,” IOP Conf. Ser. Earth Environ. Sci., vol. 81, pp. 1–5, 2017, doi: 10.1088/1755-1315/81/1/012097.

K. W. Mahardika, Y. A. Sari, and A. Arwan, “Optimasi K-Nearest Neighbour Menggunakan Particle Swarm Optimization Optimasi K-Nearest Neighbour Menggunakan Particle Swarm Optimization pada Sistem Pakar untuk Monitoring Pengendalian Hama pada Tanaman Jeruk,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 9, pp. 3333–3344, 2018

Published
2022-03-21
How to Cite
[1]
S. Yahdin, “COMBINATION OF KNN AND PARTICLE SWARM OPTIMIZATION (PSO) ON AIR QUALITY PREDICTION”, BAREKENG: J. Math. & App., vol. 16, no. 1, pp. 007-014, Mar. 2022.