PEMODELAN HASIL PRODUKSI PADI DI PROVINSI SULAWESI TENGAH MENGGUNAKAN FIXED EFFECT MODEL (FEM)
Abstract
Padi merupakan komoditas pangan utama di Indonesia. Tingkat konsumsi padi mayarakat di Sulawesi Tengah sebesar 111,4 kg perkapita pertahun yang lebih tinggi jika dibandingkan dengan masyarakat Sulawesi Selatan yaitu 106,9 kg perkapita pertahun. Diperlukan model yang dapat memprediksi hasil produksi padi di Sulawesi tengah untuk menjaga stok kebutuhan pangan masyarakat. Fixed effect Model dapat digunakan untuk melihat faktor apa saja yang dapat mempengaruhi hasil produksi padi di Sulawesi Tengah dengan menggunakan pendekatan data penelitian data panel. Fixed effect Model adalah cara mengestimasi data panel dengan menggunakan variabel dummy untuk memperoleh perbedaan intersep yang diinginkan. Dari hasil penelitian ini diperoleh bahwa faktor yang mempengaruhi hasil produksi padi di Sulawesi tengah adalah luas panen dengan setiap kenaikan luas panen sebesar 1 % akan meningkatkan hasil produksi padi sebesar 0,6764%. Dari hasil analisis diperoleh nilai R2 sebesar 98.15%.
Downloads
References
K. Pertanian, “Laporan tahunan badan ketahanan pangan tahun 2019,†2020.
Badan Ketahanan Pangan, “Road Map Diversifikasi Pangan Lokal Sumber Karbohidrat Non Beras (2020-2024),†Kementeri. Pertan. Indones., pp. 1–49, 2020.
Badan pusat statistik, “luas panen dan produksi padi di indonesia 2019,†pp. 68–70, 1377.
Kementerian Pertanian, Direktori Perkembangan Konsumsi Pangan. 2019.
C. P. Dhakal, “Multiple Regression Model Fitted for Rice Production Forecasting in Nepal: A Case of Time Series Data,†Nepal. J. Stat., vol. 2, no. June, pp. 89–98, 2018, doi: 10.3126/njs.v2i0.21157.
C. Dhakal, “Single Regression to Forecast Rice Production : A Case of Time Period and Single Regression to Forecast Rice Production : A Case of Time Period and Harvest Area,†no. August, 2018.
O. Taofik Arowolo and M. Iwada Ekum, “Food Production Modelling Using Fixed Effect Panel Data for Nigeria and Other 14 West African Countries (1990-2013),†Am. J. Theor. Appl. Stat., vol. 5, no. 4, p. 208, 2016, doi: 10.11648/j.ajtas.20160504.17.
N. Wulandari and Rahmadeni, “Analisis Faktor-Faktor yang Mempengaruhi Inflasi pada Kota Metropolitan di Indonesia dengan Menggunakan Analisis Data Panel,†J. Sains Mat. dan Stat., vol. 3, no. 2, pp. 34–42, 2017.
A. Fitrianto and N. F. K. Musakkal, “Panel Data Analysis for Sabah Construction Industries: Choosing the Best Model,†Procedia Econ. Financ., vol. 35, no. October 2015, pp. 241–248, 2016, doi: 10.1016/s2212-5671(16)00030-7.
D. T. Utari, T. Yuliana, and A. P. Hendradewa, “A Panel Data Analysis of Rice Production in Ngawi Regency, East Java,†in Proceedings of the 2nd International Seminar on Science and Technology (ISSTEC), 2020, vol. 474, no. Isstec 2019, pp. 212–217, doi: 10.2991/assehr.k.201010.031.
D. N. Gujarati and D. C. Porter, basic econometric. 2013.
M. A. D. Muda, A. Affandi, and Y. K. Suprapto, “Icasess 2019,†Forecast. Med. Purch. Budg. using Mult. Linear Regres. Method Case Study-For Ende Regency Heal. Off., p. 186, 2019.
J. Mummolo, “Improving the Interpretation of Fixed Effects Regression Results*,†vol. 6, no. 4, pp. 829–835, 2018, doi: 10.1017/psrm.2017.44.
rizka zulfikar, “Estimation Model And Selection Method Of Panel Data Regression : An Overview Of Common Effect, Fixed Effect, And Random Effect Model,†2018, doi: 10.31227/osf.io/9qe2b.
W. H. Greene, Econometric Analysis, vol. 03, no. 10. 2015.
S. badan pusat, “BPS Prov Sulawesi Tengah.†https://sulteng.bps.go.id/statictable/2017/12/21/664/luas-areal-dan-produksi-tanaman-perkebunan-rakyat-menurut-jenis-komoditi-dan-kabupaten-kota-2016-.html.
I. Muda, W. Maulana, H. S. Siregar, and N. Indra, “The analysis of effects of good corporate governance on earnings management in Indonesia with panel data approach,†Iran. Econ. Rev., vol. 22, no. 2, pp. 599–625, 2018, doi: 10.22059/ier.2018.66169.
O. L. Olvera and B. D. Zumbo, “Heteroskedasticity in Multiple Regression Analysis: What it is, How to Detect it and How to Solve it with Applications in R and SPSS [Heteroscedasticidad en análisis de regresión múltiple: qué es, cómo detectarlo y cómo resolverlo con aplicaciones en R y,†Pract. Assessment, Res. Eval., vol. 24, no. 1, 2019.
S. Informatic, T. F. Polytechnic, and C. Medicine, “C o m p a r i s o n o f d i f f e r e n t t e s t s f o r d e t e c t i n g h e t e r o s c e d a s t i c i t y i n d a t a s e t s,†vol. XVIII, 2020.
S. S. Uyanto, “Power comparisons of five most commonly used autocorrelation tests,†Pakistan J. Stat. Oper. Res., vol. 16, no. 1, pp. 119–130, 2020, doi: 10.18187/PJSOR.V16I1.2691.
N. A. M. R. Senaviratna and T. M. J. A. Cooray, “Diagnosing Multicollinearity of Logistic Regression Model,†Asian J. Probab. Stat., vol. 5, no. 2, pp. 1–9, 2019, doi: 10.9734/ajpas/2019/v5i230132.
Z. Nurlaila, M. Susilawati, D. Putu, and E. Nilakusmawati, “Standard Error Ketika Terjadi Heteroskedastisitas,†E-Jurnal Mat., vol. 6, no. 1, pp. 7–14, 2017.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.