MASALAH EIGEN DAN EIGENMODE MATRIKS ATAS ALJABAR MIN-PLUS
Abstract
Eigen problems and eigenmode are important components related to square matrices. In max-plus algebra, a square matrix can be represented in the form of a graph called a communication graph. The communication graph can be strongly connected graph and a not strongly connected graph. The representation matrix of a strongly connected graph is called an irreducible matrix, while the representation matrix of a graph that is not strongly connected is called a reduced matrix. The purpose of this research is set the steps to determine the eigenvalues and eigenvectors of the irreducible matrix over min-plus algebra and also eigenmode of the regular reduced matrix over min-plus algebra. Min-plus algebra has an ispmorphic structure with max-plus algebra. Therefore, eigen problems and eigenmode matrices over min-plus algebra can be determined based on the theory of eigenvalues, eigenvectors and eigenmode matrices over max-plus algebra. The results of this research obtained steps to determine the eigenvalues and eigenvectors of the irreducible matrix over min-plus algebra and eigenmode algorithm of the regular reduced matrix over min-plus algebra
Downloads
References
DAFTAR PUSTAKA
Baccelli, F., et al, Synchronization and Linearity, New York: John Wiley and Sons, 2001.
Konigsberg, Z.R., “A Generalized Eigenmode Algorithm for Reducible Regular Matrices over the Max-Plus Algebra”, International Matemathical Forum, 4.24. 1157-1171, 2009.
Mursyidah, H. Subiono, “Eigenvalue, Eigenvector, Eigenmode of Reducible Matrix and Its Application”, Journal of AIP Conference Proccedings 020044: 1-14, 2017.
Wibowo, A., Wijayanti, K. & Veronica, R.B.,” Penerapan Aljabar Max-Plus pada Pengaturan Sistem Antrian Traffic light”, Unnes Journal of Mathematics 7(2): 192-205, 2018.
Farlow, K.G., Maxplus Algebra, Master’s thesis, Virginia Polytechnic, Institut and State University, Virginia, 2009.
Tam, K.P., Optimizing and Approximating Eigenvectors in Max Algebra, A thesis Submitted to the University of Birmingham for The Degree of Doctor of Philosophy (PHD), 2010.
Novrida, R., .Nilai Eigen dan Vektor Eigen dalam Aljabar Max-Plus, Tesis Program Pasca Sarjana UI, Depok :UI, 2012.
Musthofa & Bintari, N., Sifat–Sifat Nilai Eigen dan Vektor Eigen atas Aljabar Max Plus, Jurnal Sains Dasar 2(1): 25-31, 2013.
Tunisa, K., Wijayanti, K. dan Veronica, R.B., Nilai Eigen dan Vektor Eigen Matriks atas Aljabar Max-Plus. Unnes Journal of Mathematics 6(2): 189-197, 2017.
Zuliyanto, A., Algoritma Eigenmode Tergeneralisasi untuk Matriks Terreduksi Reguler di dalam Aljabar Maks-Plus, Tugas Akhir untuk memperoleh Gelar Sarjana Matematika pada Jurusan Matematika pada Universitas Sebelas Maret Surakarta, 2012.
Fitria, I., Eigenmode Matriks atas Aljabar Max-Plus, Tugas Akhir untuk memperoleh Gelar Sarjana Sains pada Jurusan Matematika pada Universitas Negeri Semarang, 2019.
Nowak, A. W., The Tropical Eigen Value-Vector Problem from Algebraic, Graphical, and Computational Perspectives, A Thesis Submitted to The University of Bates Colleges for the Degree of Doctor of Philosophy (PHD),2014.
Watanabe, S. & Watanabe, Y., Min-Plus Algebra and Network, Research Institute for Mathematical Sciences Kyoto University, 041-054, 2014.
Nasichuddin, M., Aplikasi Aljabar Min-Plus dalam Menghitung Nilai Eigen dan Vektor Eigen pada Matriks n×n, Tugas Akhir untuk memperoleh Gelar Sarjana Matematika pada Jurusan Matematika pada Universitas Islam Negeri Maulana Malik Ibrahim Malang, 2018.
Subiono, Aljabar Min-Max Plus dan Penerapannya, 3th ed., Institut Teknologi Sepuluh November, Surabaya, 2015.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.