PENDUGAAN PARAMETER MODEl DISTRIBUTED LAG POLA POLINOMIAL MENGGUNAKAN METODE ALMON

  • Fitria Virgantari Pakuan University
  • Wilda Rahayu
Keywords: parameter estimation, distributed lag model, Almon method, polynomial lag

Abstract

The distributed lag model is a regression  model that describes the relationship between the dependent variable of a given period and the independent variables of a certain or previous periods. The model can be used to determine the impact of the independent variable to dependent variables over time and forecast time series data for the next periods. There are two forms of distributed lag model that have been widely proposed in the estimation of distributed lag regression model. The first form  is proposed by Koyck and the second form by Almon. This paper aims to apply the Almon model to examine the effect of  the ratio of BOPO (Operating Cost and Operating Income) to the ROA (Return on Asset) of a government bank based on quarterly data, to estimate its parameters, to examine the feasibility of the model, and to predict the next quarter.  Results shows that distributed lag model is  = 10.110 - 0.078  + 0.015  + 0.026  – 0.045  with Yt is ROA, and Xt is the ratio BOPO  on the 1st quarter until the previous 3 quarters. The model is quite good according to the determination coefficient that is 0.75, no autocorrelation in the model, t test and F test are also significant. Based on the model, the value of ROA ratio next quarter predicted 4.63%. The decrease in profitability ROA ratio is due to an increase in interest expense while interest income can not compensate

Downloads

Download data is not yet available.

References

Intriligator, M. Econometrics Models, Techniques, and Applications 2nd Edition. Los Angeles: University of California. 2006

Veerbek, M., 2005, A Guide to Modern Econometrics, Second Edition. Prentice Hall, Englewood Cliffs, New York University.

Pradana, W.A, R. Rahmawati, S. Sugito. 2016. Analisis Pengaruh Kurs Rupiah terhadap Indeks Harga Saham Gabungan Menggunakan Distributed Lag Model. Jurnal Gaussian Vol 5 No. 1 : 221-227.

Majid, A., Aslam, M., Altaf, S., & Amanullah, M. 2019. Addressing the distributed lag models with heteroscedastic errors. Communications in Statistics - Simulation and Computation, 1–19.

Rangkuti, A. 2007. Kombinasi Penaksiran Model Lag Terdistribusi Dengan Ekspektasi Adaptif Dan Penyesuaian Parsial. Jurnal Matematika, Statistika, dan Komputasi Vol 3 No.2 : 96-102.

Aqibah, M., N. L. P. Suciptawati, dan IW. Sumarjaya. 2020. Model Dinamis Autoregressive Distributed Lag (Studi Kasus: Pengaruh Kurs Dolar Amerika dan Inflasi terhadap Harga Saham Tahun 2014-2018). E-Jurnal Matematika Universitas Udayana Vol. 9(4) : 240-250.

Lukman, and Adewale, F. 2021. Almon KL Estimator for The Distributed Lag Model. Arab Journal of Basic and Applied Science Vol 28 Issue 1 : 406-412

Gujarati, D. N. 2006. Essentials of Econometrics. Third Edition. New York: The McGraw-Hill.

Laporan Keuangan Triwulan PT. Bank Rakyat Indonesia (Persero). www.bri.co.id. [diakses:15 Mei 2019].

Widarjono, A. 2007. Ekonometrika: Teori dan Aplikasi untuk Ekonomi dan Bisnis. Edisi Kedua. Yogyakarta: Ekonisia Fakultas Ekonomi. Universitas Indonesia.

Walpole, R.E. 2008. Probability and Statistics for Enginenereer Scientists 8 edition. New Jersey: Prentice Hall

Mardiatmoko, G. 2020. Pentingnya Uji Asumsi Klasik pada Model Regresi Linear Berganda. Barekeng: Jurnal Ilmu Matematika dan Terapan Vol 14 Issue 3 : 333 - 342

Sembiring, R. K. 2003. Analisis Regresi. Edisi Kedua. Bandung: Penerbit ITB.

Supranto, J. Statistik Teori dan Aplikasi. Edisi Ketujuh Jilid 2. Jakarta: Erlangga. 2009.

Santoso, S. Buku Latihan SPSS Statistik Parametrik. Jakarta: Elex Media Komputindo. 2000.

Published
2021-12-01
How to Cite
[1]
F. Virgantari and W. Rahayu, “PENDUGAAN PARAMETER MODEl DISTRIBUTED LAG POLA POLINOMIAL MENGGUNAKAN METODE ALMON”, BAREKENG: J. Math. & App., vol. 15, no. 4, pp. 761-772, Dec. 2021.