ANALISIS CREDIT SCORING TERHADAP STATUS PEMBAYARAN BARANG ELEKTRONIK DAN FURNITURE MENGGUNAKAN BOOTSTRAP AGGREGATING K-NEAREST NEIGHBOR

  • Putri Sri Astuti Universitas Mulawarman
  • Memi Nor Hayati
  • Rito Goejantoro
Keywords: classification, k-nearest neighbor, bootstrap aggregating, credit

Abstract

Classification is the process of grouping objects that have the same characteristics into several categories. This study applies a combination of classification algorithms, namely Bootstrap Aggregating K-Nearest Neighbor in credit scoring analysis. The aim is to classify the credit payment status of electronic goods and furniture at PT KB Finansia Multi Finance in 2020 and determine the level of accuracy produced. Credit payment status is grouped into 2 categories, namely smoothly and not smoothly. There are 7 independent variables that are used to describe the characteristics of the debtor, namely age, number of dependents, length of stay, years of service, income, amount of payment, and payment period. The application of the classification algorithm at the credit scoring analysis is expected to assist creditors in making decisions to accept or reject credit applications from prospective debtors. The results showed that the accuracy obtained from the Bootstrap Aggregating K-Nearest Neighbor algorithm with a proportion of 90:10, m=80%, C=73, and K=5 was the best, which was 92.308%.

Downloads

Download data is not yet available.

References

A. Siregar and A. Puspabhuana, Data Mining: Pengolahan Data menjadi Informasi dengan RapidMiner, Surakarta: CV Kekata Group, 2017.

E. Prasetyo, Data Mining: Mengolah Data Menjadi Informasi Menggunakan Matlab, Yogyakarta: Andi, 2014.

J. Han and M. Kamber, Data Mining: Concepts and Techniques, San Francisco: Morgan Kaufman Publisher, 2011.

R. S. Wahono and N. Suryana, “Combining Particle Swarm Optimization Based Feature Selection and Bagging Technique for Software Defect Prediction,” International Journal of Software Engineering and Its Applications, vol. 7, no. 5, pp. 153-166, 2013.

Y. Y. W., “Perbandingan Performansi Algoritma Decision Tree C5.0, Car, dan Chaid: Kasus Prediksi Status Resiko Kredit di Bank X,” in Seminar Nasional Aplikasi Teknologi Informasi, Yogyakarta, 2007.

F. S. Pamungkas, B. D. Prasetya and I. Kharisudin, “Perbandingan Metode Klasifikasi Supervised Learning pada Data Bank Customers Menggunakan Python,” PRISMA Prosiding Seminar Nasional Matematika, pp. 689-694, 2020.

E. Prasetyo, Data Mining: Konsep dan Aplikasi Menggunakan Matlab, Yogyakarta: Andi, 2012.

Suyanto, Machine Learning Tingkat Dasar dan Lanjut, Bandung: Informatika, 2018.

J. Riany, M. Fajar and M. P. Lukman, “Penerapan Deep Sentiment Analysis pada Angket Penilaian Terbuka Menggunakan K-Nearest Neighbor,” Jurnal SISFO, vol. 6, no. 1, pp. 147-156, 2016.

A. M. Mukid, T. Wuryandari, D. Ratnaningrum and R. S. Rahayu, “Bagging Classification Trees untuk Prediksi Resiko Preeklampsia (Studi Kasus: Ibu Hamil Kategori Penerima Jampersal di RSUD Dr. Moewardi Surakarta),” Media Statistika, vol. 8, no. 2, pp. 111-120, 2015.

C. D. Sutton, “Classification and Regression Trees, bagging, and Boosting,” Handbook of Statistics, vol. 24, pp. 303-329, 2005.

R. J. Tibshirani and B. Efron, An Introduction to the Bootstrap, New York: Chapman and Hall, 1993.

Mustafa, “Perancangan Aplikasi Prediksi Kelulusan Tepat Waktu Bagi Mahasiswa Baru dengan Teknik Data Mining (Studi Kasus: Data Akademik Mahasiswa STMIL Dipanegara),” Jurnal Citec, vol. 1, no. 3, 2014.

T. Hestie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, New York: Springer-Verlag, 2001.

M. F. Rahman, M. I. Darmawidjadja and D. Alamsah, “Klasifikasi untuk Diagnosa Diabetes Menggunakan Metode Bayesian Regularization Neural Network (RBNN),” Jurnal Informatika, vol. 11, no. 1, pp. 36-45, 2017.

Published
2021-12-01
How to Cite
[1]
P. Astuti, M. Hayati, and R. Goejantoro, “ANALISIS CREDIT SCORING TERHADAP STATUS PEMBAYARAN BARANG ELEKTRONIK DAN FURNITURE MENGGUNAKAN BOOTSTRAP AGGREGATING K-NEAREST NEIGHBOR”, BAREKENG: J. Math. & App., vol. 15, no. 4, pp. 735-744, Dec. 2021.