OPTIMAL CONTROL ON CHOLERA DISEASE SPREADING MODEL WITH THREE VARIABLES CONTROL VARIATION

  • Irma Fitria Departement of Statistics, Institut Teknologi Kalimantan Karang Joang
  • Talitha B Atlanta Departement of Mathematics, Institut Teknologi Sepuluh Nopember
  • Nadia Azahra Departement of Mathematics, Institut Teknologi Sepuluh Nopember
  • Choiriyah Agustina Departement of Mathematics, Institut Teknologi Sepuluh Nopember
  • Subchan Subchan Departement of Mathematics, Institut Teknologi Sepuluh Nopember
  • S Cahyaningtias School of Mathematics and Statistical Science, Arizona State University 900 Palm Walk
Keywords: Runge Kutta, optimal control, Pontryagin minimum principle

Abstract

Cholera is an infection of the small intestine by some strains of the bacterium Vibrio Cholerae. This disease is a deadly disease that necessitates efficient prevention and control measures. In this research, the optimal control of the cholera spread model with variations of three control variables is discussed. There are four controls to minimize the spread of diseases such as sanitation, treatment consisting of quarantine, increased education, and chlorination. The dynamic system is formed with three controls variation. Then it is compared and analyzed for the most effective result. The optimal control solution is derived using the Pontryagin Minimum Principle and solved using the Runge-Kutta method.

Downloads

Download data is not yet available.

References

H. Shaikh, J. Lynch, J. Kim, and J.-L. Excler, “Current and future cholera vaccines,” Vaccine, vol. 38, pp. A118--A126, 2020.

U.S. Department of Health & Human Services, “Cholera - Vibrio cholerae infection,” Centers for Disease Control and Prevention, 2020. https://www.cdc.gov/cholera/illness.html.

D. Legros, “Global cholera epidemiology: opportunities to reduce the burden of cholera by 2030,” J. Infect. Dis., vol. 218, no. suppl_3, pp. S137--S140, 2018.

Subchan, I. Fitria, and M. Syafi’i, “An Epidemic Cholera with Control Treatment and Intervention,” Int. Conf. Math. Pure, Applied, Comput., 2018.

P. N, S. K, and W. M., “Identifikasi Penyebab Kejadian Luar Biasa Kolera di Papua terkait Kontak Jenazah dan Sanitasi.,” Widyariset, vol. 13, no. 2, pp. 69–74, 2010.

Subchan, “Computational Optimal Control of The Terminal Bunt Manoeuvre - Part 1: Minimum-Altitude Case”,” Optim. Control Appl. Methods, vol. 28, no. 5, pp. 311–325, 2007.

Y. Emvudu and E. Kokomo, “Stability analysis of cholera epidemic model of a closed population,” J. Appl. Math. Bioinforma., vol. 2, no. 1, p. 69, 2012.

A. P. Lemos-Paião, C. J. Silva, and D. F. M. Torres, “An epidemic model for cholera with optimal control treatment,” J. Comput. Appl. Math., vol. 318, pp. 168–180, 2017.

Subchan., S. D. Surjanto., I. Fitria., and D. S. Anggraini., “Optimization of Cholera Spreading using Sanitation, Quarantine, Education and Chlorination Control,” in Proceedings of the 2nd International Conference on Applied Science, Engineering and Social Sciences - ICASESS, 2020, pp. 236–240, doi: 10.5220/0009881902360240.

S. M. Hasanah, Kendali Optimal Pencegahan Penyebaran Penyakir Kolera Dengan Control Treatment dan Klorinasi. Balikpapan: Institut Teknologi Kalimantan, 2019.

N. Hidayati, E. R. Sari, and N. H. Waryanto, “Mathematical model of Cholera spread based on SIR: Optimal control,” Pythagoras J. Pendidik. Mat., vol. 16, no. 1, 2021.

X. Wang and J. Wang, “Analysis of cholera epidemics with bacterial growth and spatial movement,” J. Biol. Dyn., vol. 9, no. sup1, pp. 233–261, 2015.

R. K. Praja, A. R. Pusporini, R. Rosalina, I. W. M. S. Arta, I. D. M. Sukrama, and N. N. D. Fatmawati, “The existence of vibrio cholerae in Indonesia: From enviromental to clinical aspects (A concise review),” OISAA J. Indones. Emas, vol. 4, no. 1, pp. 1–8, 2021.

M. Manaqib, M. Azizah, S. Pratiwi, R. A. Maulana, and others, “Analisis model matematika penyebaran penyakit Covid-19 dengan lockdown dan karantina,” BAREKENG J. Ilmu Mat. dan Terap., vol. 15, no. 3, pp. 479–492, 2021.

G.-Q. Sun, J.-H. Xie, S.-H. Huang, Z. Jin, M.-T. Li, and L. Liu, “Transmission dynamics of cholera: Mathematical modeling and control strategies,” Commun. Nonlinear Sci. Numer. Simul., vol. 45, pp. 235–244, 2017.

J. P. Tian, S. Liao, and J. Wang, “Analyzing the infection dynamics and control strategies of cholera,” in Conference Publications, 2013, vol. 2013, no. special, p. 747.

D. S. Naidu, Optimal Control System, 1st ed. United Stated of Amerika: CRC Press LLC, 2002.

P. L. DeVries, A First Course in Computational Physics, 2nd ed. Massachusetts: Jones and Barlett., 2010.

T. Y. K. Pramesti, “Analisis Kestabilan dan Kontrol Optimal pada Model Matematika Penyebaran Penyakit Kolera dengan Vaksinasi,” Universitas Airlangga, Surabaya, 2020.

Published
2022-06-01
How to Cite
[1]
I. Fitria, T. Atlanta, N. Azahra, C. Agustina, S. Subchan, and S. Cahyaningtias, “OPTIMAL CONTROL ON CHOLERA DISEASE SPREADING MODEL WITH THREE VARIABLES CONTROL VARIATION”, BAREKENG: J. Math. & App., vol. 16, no. 2, pp. 463-470, Jun. 2022.