NEGATIVE BINOMIAL REGRESSION AND GENERALIZED POISSON REGRESSION MODELS ON THE NUMBER OF TRAFFIC ACCIDENTS IN CENTRAL JAVA

  • M Al Haris Jurusan Statistika, Fakultas MIPA, Universitas Muhammadiyah Semarang
  • Prizka Rismawati Arum Jurusan Statistika, Fakultas MIPA, Universitas Muhammadiyah Semarang
Keywords: Poisson Regression, Overdispersion, Generalized Poisson Regression, Negative Binomial Regression

Abstract

Traffic accidents that always increase along with the increasing population growth and the number of vehicles impact the national economy. The number of traffic accidents is a count data that a Poisson distribution can approximate. The Poisson regression model often found violations of the overdispersion assumption by modeling the factors that affect the number of traffic accidents. Alternative models proposed to overcome the emergence of overdispersion in the Poisson regression model are the Generalized Poisson Regression and Negative Binomial Regression Models. Based on the analysis results, it was found that the overdispersion assumption violates the Poisson regression model, and the Generalized Poisson regression model is the best because it has the smallest AIC value of 485.50. Factors that significantly affect the number of traffic accidents in Central Java Province are the percentage of adolescents and the percentage of accidents occurring in the road area of the district/city.

 

Downloads

Download data is not yet available.

References

M. Kadarisman, A. Gunawan, and I. Ismiyati, “Implementasi Kebijakan Sistem Transportasi Darat dan Dampaknya terhadap Kesejahteraan Sosial di Jakarta,” ["Implementation of Land Transportation System Policies and Its Impact on Social Welfare in Jakarta,"] J. Manaj. Transp. DAN LOGISTIK, vol. 2, no. 1, pp. 59–78, 2017, doi: 10.25292/j.mtl.v2i1.129.

N. K. E. Y. Utari, I. G. A. M. Srinadi, and M. Susilawati, “Model Geographically Weighted Regression (GWR) Faktor-faktor yang Memengaruhi Kecelakaan Lalu Lintas di Provinsi Bali,” ["Geographically Weighted Regression (GWR) Model of Factors Influencing Traffic Accidents in Bali Province,"] E-Jurnal Mat., vol. 8, no. 2, pp. 140–147, 2019, doi: 10.24843/mtk.2019.v08.i02.p245.

Y. Wilandari, S. Sugito, and C. Silvia, “Analisis Kecelakaan Lalu Lintas di Kota Semarang Menggunakan Model Log Linier,” ["Analysis of Traffic Accidents in the City of Semarang Using the Linear Log Model,"] MEDIA Stat., vol. 9, no. 1, pp. 51–61, 2016, doi: 10.14710/medstat.9.1.51-61.

BPS, Statistik TRansportasi Darat 2019 Land Transportation Statistics 2019, vol. 53, no. 9. 2020.

BPS Provinsi Jawa Tengah, Provinsi Jawa Tengah Dalam Angka 2019. 2019.

P. L. A. Dewi and I. Zain, “Pemodelan Faktor Penyebab Kecelakaan Lalu Lintas Berdasarkan Metode Geographically Weighted Regression di Jawa Timur,” ["Modeling the Causes of Traffic Accidents Based on the Geographically Weighted Regression Method in East Java," Jurmnal Sains dan Seni, vol. 5, no. 1, p. D 58-D 63, 2016.

S. P. Agustianto, S. Martha, and N. Satyahadewi, “Pemodelan Faktor Penyebab Kecelakaan Lalu Lintas di Kalimantan Barat dengan Metode Geographically Weighted Regression (GWR),” ["Modeling the Causes of Traffic Accidents in West Kalimantan with the Geographically Weighted Regression (GWR) Method,"] vol. 07, no. 4, pp. 303 – 310, 2018.

M. S. Fuad, A. Kudus, and S. Sunendiari, “Pemodelan Data Kecelakaan Lalu Lintas Menggunakan Metode Regresi Poisson dan Regresi Binomial Negatif,” ["Traffic Accident Data Modeling Using Poisson Regression Method and Negative Binomial Regression,"] in SPeSIA-UNISBA , 2018, pp. 26–33.

Y. Widyaningsih, G. P. Arum, and K. Prawira, “Aplikasi K-Fold Cross Validation dalam Penentuan Model Regresi Binomial Negatif Terbaik,” ["K-Fold Cross Validation Application in Determining the Best Negative Binomial Regression Model,"] BAREKENG J. Ilmu Mat. dan Terap., vol. 15, no. 2, pp. 315–322, Jun. 2021, doi: 10.30598/barekengvol15iss2pp315-322.

A. Melliana, Y. Setyorini, H. Eko, S. Rosi, and Purhadi, “The Comparison Of Generalized Poisson Regression and Negative Binomial Reression Methods In Overcoming Overdispersion,” Int. J. Sci. Technol. Res., vol. 2, no. 8, pp. 255–258, 2013.

R. Tongaril Simarmata and D. Ispriyanti, “Penanganan Overdispersi pada Model Regresi Poisson Menggunakan Model Regresi Binomial Negatif,” ["Handling Overdispersion on the Poisson Regression Model Using the Negative Binomial Regression Model,"] Media Stat., vol. 4, no. 2, pp. 95–104, 2011.

A. Prahutama, D. Ispriyanti, and B. Warsito, “Modelling Generalized Poisson Regression in the Number of Dengue Hemorrhagic Fever (DHF) in East Nusa Tenggara,” in E3S Web of Conferences, 2020, vol. 202, doi: 10.1051/e3sconf/202020212017.

B. Yadav et al., “Can Generalized Poisson model replace any other count data models? An evaluation,” Clin. Epidemiol. Glob. Heal., vol. 11, 2021, doi: 10.1016/j.cegh.2021.100774.

J. M. Hilbe, Negative binomial regression, second edition. 2011.

J. U. Ibeji, T. Zewotir, D. North, and L. Amusa, “Modelling fertility levels in Nigeria using Generalized Poisson regression-based approach,” Sci. African, vol. 9, 2020, doi: 10.1016/j.sciaf.2020.e00494.

S. Bae, F. Famoye, J. T. Wulu, A. A. Bartolucci, and K. P. Singh, “A rich family of generalized Poisson regression models with applications,” in Mathematics and Computers in Simulation, 2005, vol. 69, no. 1-2 SPEC. ISS., doi: 10.1016/j.matcom.2005.02.026.

N. M. R. Kwswari, I. W. Sumarjaya, and N. L. P. Suciptawati, “Perbandingan Regresi Binomial Negatif dan Regresi Generalisasi Poisson dalam Mengatasi Overdispersi (Studi Kasus: Jumlah Tenaga Kerja Usaha Pencetak Genteng di Br. Dukuh, Desa Pejaten),” ["Comparison of Negative Binomial Regression and Poisson's Generalized Regression in Overcoming Overdispersion (Case Study: Number of Manpower in Tile Printing Business in Br. Dukuh, Pejaten Village),"] E-Jurnal Mat., vol. 3, no. 3, pp. 107–115, 2014, doi: 10.24843/mtk.2014.v03.i03.p072.

Published
2022-06-01
How to Cite
[1]
M. Haris and P. Arum, “NEGATIVE BINOMIAL REGRESSION AND GENERALIZED POISSON REGRESSION MODELS ON THE NUMBER OF TRAFFIC ACCIDENTS IN CENTRAL JAVA”, BAREKENG: J. Math. & App., vol. 16, no. 2, pp. 471-482, Jun. 2022.