COMPARING GAUSSIAN AND EPANECHNIKOV KERNEL OF NONPARAMETRIC REGRESSION IN FORECASTING ISSI (INDONESIA SHARIA STOCK INDEX)

  • Yuniar Farida Department of Mathematics, Science and Technology Faculty, UIN Sunan Ampel Surabaya
  • Ida Purwanti Department of Mathematics, Science and Technology Faculty, UIN Sunan Ampel Surabaya
  • Nurissaidah Ulinnuha Department of Mathematics, Science and Technology Faculty, UIN Sunan Ampel Surabaya
Keywords: Epanechnikov kernel, Gaussian kernel, Nadaraya-Watson estimator, Nonparametric regression, ISSI

Abstract

ISSI reflects the movement of sharia stock prices as a whole. It is necessary to forecast the share price to help investors determine whether the shares should be sold, bought, or retained. This study aims to predict the value of ISSI using nonparametric kernel regression. The kernel regression method is one of the nonparametric regression methods used to estimate conditional expectations using kernel functions. Kernel functions used in this study are gaussian and Epanechnikov kernel functions. The estimator used is the estimator Nadaraya-Watson. This study aims to compare the two kernel functions to predict the value of ISSI in the period from January 2016 to October 2019. The analysis results obtained the best method in predicting ISSI values, namely nonparametric kernel regression using Nadaraya-Watson estimator and Gaussian kernel function with the MAPE value of 15% and the coefficient of determination of 85%. Independent variables that significantly affect ISSI are interest rates, exchange rates, and inflation. Curve smoothing is done using bandwidth value (h) searched by the Silverman rule. The calculation result with the Silverman rule obtained a bandwidth value of 101832.7431.

Downloads

Download data is not yet available.

References

Y. W. Icha Puspitasari, Suparti, “Analisis Indeks Harga Saham Gabungan (IHSG) dengan Menggunakan Model Regresi Kernel,” Jurnal Gaussian, vol. 1, no. 1, pp. 93–102, 2012.

B. E. Indonesia, “Produk Syariah,” IDX Syariah, 2018.

D. Okky and S. Setiawan, “Pemodelan Indeks Harga Saham Gabungan ( IHSG ), Kurs , dan Harga Minyak Dunia dengan,” Jurnal Sains Dan Seni, vol. 1, no. 1, pp. 1–6, 2012.

Firdaniza and Jondri, “Prediksi Trend Pergerakan Harga Saham dengan Hidden Markov Model (HMM) dan Support Vector Machine (SVM),” Jurnal Matematika Integratif, vol. 10, no. 1, pp. 19–24, 2014, doi: 10.24198/jmi.v10i1.10181.

R. Yuniarti and W. Hartati, “Regresi Nonparametrik Menggunakan Metode Robust Dan Cross-Validation,” Unisda Journal of Mathematics and Computer Science, vol. 3, no. 2, pp. 9–1, 2017.

M. L. Alfiani, I. M. Nur, and T. W. Utami, “Model Regresi Nonparametrik Berdasarkan Estimator Polinomial Lokal Kernel Pada Kasus Pertumbuhan Balita,” Statistika, vol. 2, no. 1, pp. 34–39, 2014, doi: 10.25077/jmu.9.1.15-22.2020.

N. Maysyaroh, REGRESI NONPARAMETRIK KERNEL NADARAYA-WATSON DALAM DATA TIME SERIES. Yogyakarta: UIN Sunan Kalijaga Yogyakarta, 2015.

T. Ayuningtyas, REGRESI NONPARAMETRIK KERNEL NADARAYA- WATSON DALAM DATA TIME SERIES (Studi Kasus; Indeks Harga Saham Gabungan Terhadap KURS, Inflasi, dan Tingkat Suku Bunga Periode Januari 2015 – Maret 2018). Yogyakarta, 2018. doi: 10.18041/2382-3240/saber.2010v5n1.2536.

E. Setiawan and R. F. Suwarman, “Analisis Perbandingan Fungsi Kernel dalam Perhitungan Economic Capital untuk Risiko Operasional Menggunakan Bahasa Pemrograman Python,” Jurnal Matematika, vol. 17, no. 2, pp. 9–16, 2018.

S. Rega, E. Litriani, and D. A. Akbar, “PENGARUH BI RATE, INFLASI, NILAI TUKAR RUPIAH, DAN SERTIFIKAT BANK INDONESIA SYARIAH (SBIS) TERHADAP INDEKS SAHAM SYARIAH INDONESIA (ISSI),” I-Economic, vol. 3, no. 1, pp. 51–72, 2017.

D. T. Anggarini, “ANALISA JUMLAH UANG BEREDAR DI INDONESIA TAHUN 2005-2014,” MONETER, vol. III, no. 2, pp. 161–169, 2016.

A. Jariah, “Analisis Suku Bunga Kredit Dan Kualitas Pelayanan serta Pengaruhnya terhadap Loyalitas Nasabah Pada BPR di Lumajang,” Jurnal WIGA, vol. 3, no. 2, pp. 1–19, 2013.

G. Wang, C. Lopez-Molina, and B. de Baets, “Automated blob detection using iterative Laplacian of Gaussian filtering and unilateral second-order Gaussian kernels,” Digital Signal Processing: A Review Journal, vol. 96, p. 102592, 2020, doi: 10.1016/j.dsp.2019.102592.

R. Vusvitasari, S. Nugroho, and S. Akbar, “Kajian Hubungan Koefisien Korelasi Pearson (ρ), Spearman-Rho (r), Kendall-Tau (τ), Gamma (G) , dan Somers,” e-Journal Statistika, pp. 41–54, 2016.

Z. Li, X. Liu, J. Dai, J. Chen, and H. Fujita, “Measures of uncertainty based on Gaussian kernel for a fully fuzzy information system,” Knowledge-Based Systems, vol. 196, p. 105791, 2020, doi: 10.1016/j.knosys.2020.105791.

N. Herawati, K. Nisa, and E. Setiawan, “THE OPTIMAL BANDWIDTH FOR KERNEL DENSITY ESTIMATION OF SKEWED DISTRIBUTION : A CASE STUDY ON SURVIVAL TIME DATA OF CANCER PATIENTS,” no. 978, pp. 380–388, 2017.

J. Zhao, H. Zhang, and J. A. Zhang, “Gaussian kernel adaptive filters with adaptive kernel bandwidth,” Signal Processing, vol. 166, p. 107270, 2020, doi: 10.1016/j.sigpro.2019.107270.

C. Marinelli and S. Addona, “Nonparametric estimates of pricing functionals,” Journal of Empirical Finance, 2017, doi: 10.1016/j.jempfin.2017.07.005.

D. Piretzidis and M. G. Sideris, “Additional methods for the stable calculation of isotropic Gaussian filter coefficients: The case of a truncated filter kernel,” Computers and Geosciences, vol. 145, no. August, p. 104594, 2020, doi: 10.1016/j.cageo.2020.104594.

J. A. Saputra and E. Listyani, “PEMILIHAN BANDWIDTH PADA ESTIMATOR NADARAYA-WATSON DENGAN TIPE KERNEL GAUSSIAN PADA DATA TIME SERIES,” Jurnal Pendidikan Matematika dan Sains, pp. 1–7, 2016.

J. Wang, J. He, C. Feng, L. Feng, and Y. Li, “Stock index prediction and uncertainty analysis using multi-scale nonlinear ensemble paradigm of optimal feature extraction, two-stage deep learning and Gaussian process regression,” Applied Soft Computing, vol. 113, p. 107898, 2021, doi: 10.1016/j.asoc.2021.107898.

A. Z. Zambom and R. Dias, “A Review of Kernel Density Estimation with Applications to Econometrics,” International Econometric Review (IER), vol. 1, no. 1, pp. 20–42, 2012.

M. Chen, Z. Xu, J. Zhao, Y. Zhu, and Z. Shao, “Nonparametric identification of batch process using two-dimensional kernel-based Gaussian process regression,” Chemical Engineering Science, vol. 250, p. 117372, 2021, doi: 10.1016/j.ces.2021.117372.

M. S. Apriani, “ESTIMATOR NADARAYA-WATSON DENGAN KERNEL ORDE BERHINGGA DAN TAK HINGGA,” Jurnal Penelitian, vol. 18, no. 2, pp. 157–164, 2015.

M. C. Recchioni, G. Iori, G. Tedeschi, and M. S. Ouellette, “The complete Gaussian kernel in the multi-factor Heston model: Option pricing and implied volatility applications,” European Journal of Operational Research, vol. 293, no. 1, pp. 336–360, 2021, doi: 10.1016/j.ejor.2020.11.050.

R. S. Pratiwi and D. B. Utomo, “Prediksi Indeks Saham Syariah Indonesia Menggunakan Model Hidden Markov,” Jurnal Sains dan Seni ITS, vol. 6, no. 2, pp. 2–7, 2018, doi: 10.12962/j23373520.v6i2.23859.

D. A. Nanda and A. Hoyyi, “Analisis pengaruh jumlah uang beredar dan nilai tukar rupiah terhadap indeks harga saham gabungan menggunakan pemodelan regresi semiparametrik kernel,” vol. 5, pp. 373–382, 2016.

Published
2022-03-21
How to Cite
[1]
Y. Farida, I. Purwanti, and N. Ulinnuha, “COMPARING GAUSSIAN AND EPANECHNIKOV KERNEL OF NONPARAMETRIC REGRESSION IN FORECASTING ISSI (INDONESIA SHARIA STOCK INDEX)”, BAREKENG: J. Math. & App., vol. 16, no. 1, pp. 323-332, Mar. 2022.