APPLICATION OF SYSTEM MAX-PLUS LINEAR EQUATIONS ON SERIAL MANUFACTURING MACHINE WITH STORAGE UNIT

  • Andika Ellena Saufika Hakim Maharani Department of Computer Science, Faculty of Engineering, Bumigora University
  • Ari Suparwanto Department Mathematics, Faculty of Mathematics and Science, Gadjah Mada University
Keywords: Max-Plus Algebra, Discrete Event System, Production System, Serial Manufacturing Machine, Time-Invariant System

Abstract

The set  together with the operation maximum (max) denoted as  and addition (+) denoted as  is called max-plus algebra. Max-plus algebra may be used to apply algebraically a few programs of Discrete Event Systems (DES), certainly one of the examples in the production system. In this study, the application of max-plus algebra in a serial manufacturing machine with a storage unit is discussed. The results of this are the generalization system max-plus-linear equations on a production system that is, in addition, noted the max-plus-linear time-invariant system. From the max-plus-linear time-invariant system, it can be obtained the equation  which is then used to determine the beginning time of a production system so the manufacturing machine work periodically. The eigenvector and eigenvalue of the matrix  are then used to find the beginning time and the period time of the manufacturing machine. Furthermore, the time when the product leaves the manufacturing machine with the time while the raw material enters the manufacturing machine is given and vice versa are obtained from the max-plus-linear time-invariant system that is can be formed in the equation .

Downloads

Download data is not yet available.

References

S. Van Loenhout, T. Van Den Boom, S. Farahani, and B. De Schutter, “Model Predictive Control for Stochastic Switching Max-Plus-Linear Systems,” IFAC Proc. Vol., vol. 45, no. 29, pp. 79–84, 2012, doi: 10.3182/20121003-3-MX-4033.00016.

J. Komenda, S. Lahaye, J. L. Boimond, and T. van den Boom, “Max-Plus Algebra and Discrete Event Systems,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 1784–1790, 2017, doi: 10.1016/j.ifacol.2017.08.163.

A. Permana, S. Siswanto, and P. Pangadi, “Eigen Problem Over Max-Plus Algebra on Determination of the T3 Brand Shuttlecock Production Schedule,” Numer. J. Mat. dan Pendidik. Mat., vol. 4, no. 1, pp. 23–30, 2020, doi: 10.25217/numerical.v4i1.702.

B. De Schutter, T. van den Boom, J. Xu, and S. S. Farahani, “Analysis and Control of Max-Plus Linear Discrete-Event Systems: An Introduction,” Discret. Event Dyn. Syst. Theory Appl., vol. 30, no. 1, pp. 25–54, 2020, doi: 10.1007/s10626-019-00294-w.

A. Kurniawan, A. R. I. Suparwanto, and A. Max-plus, “Sistem Persamaan Linear Max-Plus dan Terapannya pada Sistem Jaringan Kereta Api,” J. Mat. Thales, vol. 02, no. 01, pp. 63–77, 2020.

T. J. J. Van Den Boom and B. De Schutter, “Modeling and Control of Switching Max-Plus-Linear Systems with Random and Deterministic Switching,” Discret. Event Dyn. Syst. Theory Appl., vol. 22, no. 3, pp. 293–332, 2012, doi: 10.1007/s10626-011-0123-x.

T. J. J. van den Boom, M. van den Muijsenberg, and B. De Schutter, “Model Predictive Scheduling of Semi-Cyclic Discrete-Event Systems Using Switching Max-Plus Linear Models and Dynamic Graphs,” Discret. Event Dyn. Syst. Theory Appl., vol. 30, no. 4, pp. 635–669, 2020, doi: 10.1007/s10626-020-00318-w.

B. de Schutter, “Max-Algebraic System Theory for Discrete Event Systems,” Katholieke Universiteit Leuven, 1996.

Subiono, Aljabar Maxplus dan Terapannya, 2.0.0. Surabaya: Institut Teknologi Sepuluh Nopember, 2014.

M. D. Van Den Muijsenberg, “Scheduling Using Max-Plus Algebra General Framework and Application to A Baggage Handling System,” Delft University of Technology, 2015.

S. Siswanto, “Permanen dan Dominan Suatu Matriks Atas Aljabar Max-Plus Interval,” PYTHAGORAS, vol. 7, no. 2, pp. 45–54, 2012.

D. Adzkiya, B. De Schutter, and A. Abate, “Backward Reachability of Autonomous Max-Plus-Linear Systems,” IFAC Proc. Vol., vol. 9, no. 3, pp. 117–122, 2014, doi: 10.3182/20140514-3-FR-4046.00056.

A. Abate, A. Cimatti, A. Micheli, and M. S. Mufid, “Computation of The Transient in Max-Plus Linear Systems via SMT-Solving,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12288 LNCS, pp. 161–177, 2020, doi: 10.1007/978-3-030-57628-8_10.

M. Umer, U. Hayat, and F. Abbas, “An Efficient Algorithm for Nontrivial Eigenvectors in Max-Plus Algebra,” Symmetry (Basel)., vol. 11, no. 6, pp. 1–9, 2019, doi: 10.3390/sym11060738.

L. Aulia and R. H. Tjahjana, “Predictive Control for Max-Plus Linear Systems in Production Systems,” J. Fundam. Math. Appl., vol. 3, no. 2, pp. 133–147, 2020.

L. Wang, W. Li, and H. Li, “AE Solutions to Two-Sided Interval Linear Systems Over Max-Plus Algebra,” J. Inequalities Appl., vol. 291, pp. 1–13, 2018, doi: 10.1186/s13660-018-1869-6.

C. Wang and Y. Tao, “A Note on Global Optimization for Max-Plus Linear Systems,” Automatica, vol. 119, p. 109104, 2021.

J. Xu, B. De Schutter, and T. J. J. Van Den Boom, “Model Predictive Control for Max-Plus-Linear Systems via Optimistic Optimization,” IFAC Proc. Vol., vol. 9, no. 3, pp. 111–116, 2014, doi: 10.3182/20140514-3-FR-4046.00063.

Published
2022-06-01
How to Cite
[1]
A. E. S. H. Maharani and A. Suparwanto, “APPLICATION OF SYSTEM MAX-PLUS LINEAR EQUATIONS ON SERIAL MANUFACTURING MACHINE WITH STORAGE UNIT”, BAREKENG: J. Math. & App., vol. 16, no. 2, pp. 525-530, Jun. 2022.