AN EXISTENCE AND UNIQUENESS OF THE WEAK SOLUTION OF THE DIRICHLET PROBLEM WITH THE DATA IN MORREY SPACES

  • Nicky Kurnia Tumalun Mathematics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Manado
Keywords: Morrey spaces, Dirichlet problem, elliptic equations

Abstract

Let n-2<\lambda<n , f  be a function in Morrey spaces L^{1,\lambda}(\Omega) , and the equation

Lu=f

u \in W^{1,2}(\Omega)

be a Dirichlet problem, where \Omega is a bounded open subset of R^{n} , n \ge 3 , L and  is a divergent elliptic operator. In this paper, we prove the existence and uniqueness of this Dirichlet problem by directly using the Lax-Milgram Lemma and the weighted estimation in Morrey spaces

Downloads

Download data is not yet available.

References

C. B. Morrey, "On the solutions of quasi-linear elliptic partial differential equations," Trans. Amer. Math. Soc., vol. 43, pp. 126-166, 1938.

P. E. A. Tuerah and N. K. Tumalun, "Some notes on the inclusion between Morrey spaces," J. Math. Inequal., vol. 16, no. 1, pp. 355-362, 2022.

N. K. Tumalun, "Proper inclusion between vanishing Morrey spaces and Morrey spaces," Tensor: Pure and Applied Mathematics Journal, vol. 2, no. 1, pp. 1-4, 2021.

R. Kawasumi and E. Nakai, "Pointwise multipliers on weak Morrey spaces," Anal. Geom. Metr. Spaces, vol. 8, no. 1, pp. 363-381, 2020.

N. K. Tumalun, D. I. Hakim and H. Gunawan, "Inclusion between generalized Stummel classes and other function spaces," Math. Inequal. Appl., vol. 23, no. 2, pp. 547-562, 2020.

N. K. Tumalun and H. Gunawan, "Morrey spaces are embedded between weak Morrey spaces and Stummel classes," J. Indones. Math. Soc., vol. 25, no. 3, pp. 203-209, 2019.

N. K. Tumalun, H. Gunawan and J. Lindiarni, "On the inclusion between weak Lebesgue spaces and Stummel classes," in 5th ICRIEMS, Yogyakarta, 2018.

N. K. Tumalun, D. I. Hakim and H. Gunawan, "Some function spaces and their applications to elliptic partial differential equations," Math. Vesnik (in press), 2022.

N. K. Tumalun and P. E. A. Tuerah, "A regularity of the weak solution gradient of the Dirichlet problem for divergent form elliptic equations in Morrey spaces," Aust. J. Math. Anal. Appl., vol. 18, no. 2, pp. 14.1-14.7, 2021.

G. Di Fazio, "Regularity for elliptic equations under minimal assumptions," J. Indones. Math. Soc., vol. 26, no. 1, pp. 101-127, 2020.

G. Di Fazio, "On Dirichlet problem in Morrey spaces," J. Differential and Integral Equations, vol. 6, pp. 383-391, 1993.

N. K. Tumalun and P. E. A. Tuerah, "A regularity of the Dirichlet problem with the data belongs to generalized Morrey spaces," in AIP Proceeding (to appear), Semarang, 2021.

M. Gruter and K. O. Widman, "The Green function for uniformly elliptic equations," Manuscripta Math., vol. 37, pp. 303-342, 1982.

G. R. Cirmi, S. D'Asero and S. Leonardi, "Morrey estimates for a class of elliptic equations with drift terms," Adv. Nonlinear Anal., vol. 9, pp. 1333-1350, 2020.

H. Brezis, Functional Analysis, Sobolev Spaces, and Partial Differential Equations, New York: Springer, 2011.

R. Wheeden and A. Zygmund, Measure and Integral. An Introduction to Real Analysis. Second Edition, Boca Raton: Taylor & Francis Group, 2015.

G. Di Fazio, "Holder continuity of the solutions for some Schrodinger equations," Rend. Sem. Math. Padova, vol. 79, pp. 173-183, 1988.

Published
2022-09-01
How to Cite
[1]
N. Tumalun, “AN EXISTENCE AND UNIQUENESS OF THE WEAK SOLUTION OF THE DIRICHLET PROBLEM WITH THE DATA IN MORREY SPACES”, BAREKENG: J. Math. & App., vol. 16, no. 3, pp. 829-834, Sep. 2022.