• Jonner Nainggolan Universitas Cenderawasih
Keywords: optimal control, influenza, resistance, prevention, treatment


This paper examines the influenza spread model by considering subpopulation, vaccination, resistance to analgesic/antipyretic drugs + nasal decongestants. Based on the studied model are determined, non-endemic, endemic stability points and the basic reproduction number. In the model studied, control is given in an effort to prevent contact of individuals infected with influenza and susceptible (u1), and control treatment for infected individuals in an effort to accelerate the recovery of infected individuals (u2). In the numerical simulation, using the control u1 the number of infected individuals subpopulation decreased compared to that without control. The number of individual recovered subpopulations using the u2 control increased more than that without the control.


Download data is not yet available.


Kemenkes RI, “Dokumen resmi,” Pedoman kesiapan menghadapi COVID-19, pp. 0–115, 2020.

C. W. Kanyiri, K. Mark, and L. Luboobi, “Mathematical Analysis of Influenza A Dynamics in the Emergence of Drug Resistance,” Comput. Math. Methods Med., vol. 2018, 2018, doi: 10.1155/2018/2434560.

Y. H. Cheng et al., “Mathematical modeling of postcoinfection with influenza A virus and Streptococcus pneumoniae, with implications for pneumonia and COPD-risk assessment,” Int. J. COPD, vol. 12, pp. 1973–1988, 2017, doi: 10.2147/COPD.S138295.

N. S. Chong, J. M. Tchuenche, and R. J. Smith, “A mathematical model of avian influenza with half-saturated incidence,” Theory Biosci., vol. 133, no. 1, pp. 23–38, 2014, doi: 10.1007/s12064-013-0183-6.

L. Pinky and H. M. Dobrovolny, “Epidemiological Consequences of Viral Interference: A Mathematical Modeling Study of Two Interacting Viruses,” Front. Microbiol., vol. 13, no. March, pp. 1–12, 2022, doi: 10.3389/fmicb.2022.830423.

C. Quirouette, N. P. Younis, M. B. Reddy, and C. A. A. Beauchemin, “A mathematical model describing the localization and spread of influenza A virus infection within the human respiratory tract,” PLoS Comput. Biol., vol. 16, no. 4, pp. 1–29, 2020, doi: 10.1371/journal.pcbi.1007705.

P. Andayani, L. R. Sari, A. Suryanto, and I. Darti, “Numerical Study for Zika Virus Transmission With Beddington-Deangelis Incidence Rate,” Far East J. Math. Sci., vol. 111, no. 1, pp. 145–157, 2019, doi: 10.17654/ms111010145.

A. M. Niewiadomska et al., “Population-level mathematical modeling of antimicrobial resistance: A systematic review,” BMC Med., vol. 17, no. 1, pp. 1–20, 2019, doi: 10.1186/s12916-019-1314-9.

S. Q. Du and W. Yuan, “Mathematical modeling of interaction between innate and adaptive immune responses in COVID-19 and implications for viral pathogenesis,” J. Med. Virol., vol. 92, no. 9, pp. 1615–1628, 2020, doi: 10.1002/jmv.25866.

N. Bellomo et al., A multiscale model of virus pandemic: Heterogeneous interactive entities in a globally connected world, vol. 30, no. 8. 2020.

Z. Y. Zhao et al., “A mathematical model for estimating the age-specific transmissibility of a novel coronavirus,” medRxiv, pp. 1–8, 2020, doi: 10.1101/2020.03.05.20031849.

B. S. Ho and K. M. Chao, “On the influenza vaccination policy through mathematical modeling,” Int. J. Infect. Dis., vol. 98, pp. 71–79, 2020, doi: 10.1016/j.ijid.2020.06.043.

E. Jung, S. Iwami, Y. Takeuchi, and T. C. Jo, “Optimal control strategy for prevention of avian influenza pandemic,” J. Theor. Biol., vol. 260, no. 2, pp. 220–229, 2009, doi: 10.1016/j.jtbi.2009.05.031.

T. Hussain, M. Ozair, K. Oare Okosun, M. Ishfaq, A. Ullah Awan, and A. Aslam, “Dynamics of swine influenza model with optimal control,” Adv. Differ. Equations, vol. 2019, no. 1, 2019, doi: 10.1186/s13662-019-2434-4.

S. Tyagi, S. C. Martha, S. Abbas, and A. Debbouche, Mathematical modeling and analysis for controlling the spread of infectious diseases, Chaos, Solitons and Fractals, 144, pp. 1-14, 2021.

P. Van Den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,” Math. Biosci., vol. 180, no. 1–2, pp. 29–48, 2002, doi: 10.1016/S0025-5564(02)00108-6.

Naidu, D. S., Optimal Control System, CRC Press, USA, 2003.

How to Cite
J. Nainggolan, “OPTIMAL CONTROL OF INFLUENZA A DYNAMICS IN THE EMERGENCE OF A TWO STRAIN”, BAREKENG: J. Math. & App., vol. 16, no. 3, pp. 835-844, Sep. 2022.