AN ORDINAL LOGISTIC REGRESSION MODEL FOR ANALYZING RISK ZONE STATUS OF COVID-19 SPREAD

  • Tessya Mutiara Dewi Mathematics Department, FMIPA, Universitas Negeri Yogyakarta
  • Rosita Kusumawati Mathematics Department, FMIPA, Universitas Negeri Yogyakarta https://orcid.org/0000-0003-3576-3895
Keywords: Ordinal Logistic Regression, Risk Zone COVID-19

Abstract

Coronavirus disease 2019 (COVID-19) is a new type of virus that has been found to have infected human since it first appeared in Wuhan, China, in December 2019. This study aims to determine the factors that influence the risk zone status of COVID-19 spread in Indonesia using ordinal logistic regression. The ordinal logistic regression model in this study uses proportional odds model because the researcher assumes probability of predictor variable coefficients is the same for each respond category. The response variable is secondary data from the COVID-19 Handling Task Force, namely the status of the risk zone for the spread of COVID-19 who has 4 categorical levels, namely high, medium, low, and no cases. Predictor variables are elderly population, COVID-19 referral hospital, diabetes mellitus, hypertension, hand washing behavior, male population, and smoking habits. Based on results of the analysis, variables that significantly affect the risk zone status of COVID-19 spread in Indonesia are elderly population and diabetes mellitus. The Odds proportional figure shows that the higher percentage of the elderly population, the higher chance of an area with high-risk zone status (OR=1.171). The higher percentage of comorbidities diabetes mellitus, the higher chance of an area with high-risk zone status (OR=1.569).

Downloads

Download data is not yet available.

References

Kemenkes RI, “FAQ,” 3 2020. [Online]. Available: https://www.kemkes.go.id/folder/view/full-content/structure-faq.html. [Accessed 15 Desember 2020].

Satgas COVID-19, “Apa yang dimaksud dengan pandemi?,” 2020. [Online]. Available: https://covid19.go.id/tanya-jawab?.

Kemenkes RI, “Perkembangan COVID-19 di Indonesia update 5 Juli,” Kemenkes RI, 2020.

BNPB, “Pengelompokan Kriteria Risiko COVID-19 di Daerah Berdasarkan Zonasi Warna,” 20 Juni 2020. [Online]. Available: https://bnpb.go.id/berita/pengelompokan-kriteria-risiko-covid19-di-daerah-berdasarkan-zonasi-warna. [Accessed 16 Desember 2020].

J. T. Atmojo, D. Arradini, A. T. Darmayanti, A. Widiyanto and R. T. Handayani, “Dampak Merokok Terhadap COVID-19,” Jurnal Ilmiah Permas, vol. 11, no. 1, pp. 169-176, 2021.

I. S. Muflihah, A. Noviyana, Purwati and W. Margiana, “Edukasi Cuci Tangan sebagai Salah Satu Pencegahan dan Penanganan Infeksi dalam Upaya Mawas Diri dari Covid,” Jurnal Publikasi Kebidanan, vol. 11, no. 2, pp. 109-117, 2020.

M. A. Satria, R. V. Tutupoho and D. Chalidyanto, “Analisis Faktor Risiko Kematian dengan Penyakit Komorbid COVID-19,” Jurnal Keperawatan Silampari, vol. 4, no. 1, pp. 2581-1975, 2020.

A. Gunawan, K. Prahasanti, M. R. Utama and M. P. Airlangga, “Pengaruh Komorbid Hipertensi terhadap Severitas Pasien Coronavirus Disease 2019,” Jurnal Implementa Husada, vol. 2, no. 1, 2020.

S. Setiati and M. K. Azwar, “COVID 19 AND INDONESIA,” Acta Medica Indonesia, pp. 84-89, 2020.

R. A. Ghiffari, “Dampak Populasi dan Mobilitas Perkotaan terhadap Penyebaran Pandemi COVID-19 di Jakarta,” Jurnal Tunas Geografi, vol. 9, no. 1, pp. 81-88, 2020.

D. W. Hosmer and S. Lemeshow, Applied Logistic Regression, New York: John Wiley & Sons, Inc, 2000.

Satgas COVID-19;, “Peta Zona Risiko COVID-19,” 2020. [Online]. Available: https://covid19.go.id/peta-risiko. [Accessed 5 January 2021].

Satgas COVD-19, “Rumah Sakit Rujukan COVID-19 Update Mei,” [Online]. Available: https://bnpb-inacovid19.hub.arcgis.com/datasets/inacovid19::rs-rujukan-update-may-2020/about. [Accessed 30 December 2020].

Badan Pusat Statistik, “Jumlah Penduduk Menurut Wilayah, Kelompok Umur, dan Jenis Kelamin,” [Online]. Available: https://sensus.bps.go.id/topik/tabular/sp2020/86. [Accessed 5 January 2021].

Litbangkes RI, “Riskesdas,” [Online]. Available: https://www.litbang.kemkes.go.id/laporan-riset-kesehatan-dasar-riskesdas/ . [Accessed 2021 Februari 2021].

C. R. Bilder and T. M. Loughin, Analysis of Categorical Data With R, Boca Raton: Taylor & Francis Group, 2015.

A. Agresti, Categorical Data Analysis, New York: John Wiley & Sons, Inc., 1990.

D. G. Kleinbaum and M. Klein, Logistic Regression: A Self Learning Text (edisi ketiga), New York: Springer, 2010.

N. I. Putri and Budyanra, Penerapan Regresi Logistik Ordinal dengan Proportional Odds Model pada Determinan Tingkat Stres Akademik Mahasiswa, Jakarta Timur: Seminar Nasional Official Statistics, 2019.

M. W. Fagerland, “Tests for Goodness of Fit in Ordinal Logistic Regression Models,” Journal of Statistical Computation and Simulation, vol. 86, no. 17, pp. 3398-3418, Maret 2016.

R. Indarwati, "Lindungi Lansia dari COVID-19," Indonesian Journal of Community Health Nursing, vol. 5, 1 April 2020.

P. A. Roeroe, B. P. Sedli and O. Umboh, “Faktor Risiko Terjadinya Coronavirus Disease 2019 (COVID-19) pada Penyandang Diabetes Mellitus,” e-Clinic, vol. 9, no. 1, pp. 154-169, 2021.

Published
2022-09-01
How to Cite
[1]
T. Dewi and R. Kusumawati, “AN ORDINAL LOGISTIC REGRESSION MODEL FOR ANALYZING RISK ZONE STATUS OF COVID-19 SPREAD”, BAREKENG: J. Math. & App., vol. 16, no. 3, pp. 853-860, Sep. 2022.