QUANTILE REGRESSION MODEL ON RAINFALL IN MAKASSAR 2019

  • Wahidah Sanusi Department of Mathematics, FMIPA, Universitas Negeri Makassar, Indonesia
  • Sukarna Sukarna Department of Mathematics, FMIPA, Universitas Negeri Makassar, Indonesia https://orcid.org/0000-0001-9713-773X
  • Nur Harisahani Department of Mathematics, FMIPA, Universitas Negeri Makassar, Indonesia
Keywords: quantile regression, rainfall, Makassar, seasonal data

Abstract

Makassar is an area that has a monsoon rainfall pattern. This study aims to find a quantile regression model and to determine the factors that significantly influence rainfall in the city of Makassar. This applied research applies a quantile regression model to rainfall data which is seasonal data. The advantage of this quantile regression model is that it is able to detect extreme conditions of rainfall, such as heavy rain. The data used is daily data in 2019. The estimation results obtained 9 (nine) models from each quantile used. The best model is obtained based on the largest coefficient of determination ( ), namely the 0,8th quantile ( ) of 0.28%. Furthermore, based on the model, it is found that the factor that significantly influences rainfall in the city of Makassar is humidity. At the same time, the air temperature and wind speed have no significant effect on rainfall in the city of Makassar.

Downloads

Download data is not yet available.

References

Sukarna, E. Y. P. Ananda, and M. S. Wahyuni, “Rainfall Forecasting Model Using ARIMA and Kalman Filter in Makassar, Indonesia,” J. Phys. Conf. Ser., vol. 2123, no. 1, pp. 0–7, 2021, doi: 10.1088/1742-6596/2123/1/012044.

S. A. Thamrin, Aswi, Ansariadi, A. K. Jaya, and K. Mengersen, “Bayesian spatial survival modelling for dengue fever in Makassar, Indonesia,” Gac. Sanit., vol. 35, no. S1, pp. S59–S63, 2021, doi: 10.1016/j.gaceta.2020.12.017.

A. Aswi, S. Cramb, W. Hu, G. White, and K. Mengersen, “Spatio-Temporal Analysis of Dengue Fever in Makassar Indonesia: A Comparison of Models Based on CARBayes,” in Case Studies in Applied Bayesian Data Science, Lecture Notes in Mathematics, vol. 2259, Switzerland: Springer Nature Switzerland AG, 2020, pp. 229–244.

Paida, “Deteksi Perubahan Pola Curah Hujan Kota Makassar,” Universitas Hasanuddin, 2011.

C. R. Malino, M. Arsyad, and P. Palloan, “Analisis parameter curah hujan dan suhu udara dikota Makassar terkait fenomena perubahan iklim,” J. Sains dan Pendidik. Fis., vol. 17, no. 2, pp. 139–145, 2021, [Online]. Available: http://ojs.unm.ac.id/jsdpf.

F. Mazid, Wasilah, and Alfiah, “Pusat Pelatihan Bulutangkis dengan Pendekatan Arsitektur Bioklimatik di Kota Makassar,” TIMPALAJA Archit. Student Journals, vol. 3, no. 2, pp. 143–152, 2021, [Online]. Available: https://journal.uin-alauddin.ac.id/index.php/timpalaja/article/view/18635/13110.

R. Maru et al., “Analysis of The Heat Island Phenomenon in Makassar, South Sulawesi, Indonesia,” Am. J. Appl. Sci., vol. 12, no. 11, 2015, doi: 10.3844/ajassp.2015.

W. Sanusi, “Analisis Homogenitas Data Curah Hujan Tahunan Kota Makassar,” J. Sci. Pinisi, vol. 2, no. 2, pp. 137–142, 2016.

S. Maulidani S, N. Ihsan, and Sulistiawaty, “Analisis Pola dan Intensitas Curah Hujan Berdasakan Data Observasi dan Satelit Tropical Rainfall Measuring Missions (TRMM) 3B42 V7 di Makassar,” J. Sains Dan Pendidik. Fis., vol. 11, no. 1, pp. 98–103, 2015.

D. N. Gujarati and D. C. Porter, Basic Econometrics, Fifth edit. New York: Douglas Reiner, 2009.

N. Fadhilah, E. Erfiani, and I. Indahwati, “Comparison of Functional Regression and Functional Principal Component Regression for Estimating Non-Invasive Blood Glucose Level,” Indones. J. Stat. Its Appl., vol. 5, no. 1, pp. 14–25, 2021, doi: 10.29244/ijsa.v5i1p14-25.

Saidah, F. Yanuar, and D. Devianto, “Analisis Regresi Kuantil,” J. Mat. UNAND, vol. 5, no. 1, p. 103, 2016, doi: 10.25077/jmu.5.1.103-107.2016.

V. E. Wahyudi and I. Zain, “Analisis ipm di pulau jawa menggunakan analisis regresi kuantil 1 1,2,” vol. 2, no. 1, 2014.

R. Rahmawati, Widiarti, and P. Novianti, “Regresi Kuantil (Studi Kasus pada Data Suhu Harian),” pp. 1–8, 2011.

A. Djuraidah and A. H. Wigena, “Regresi Kuantil untuk Eksplorasi Pola Curah Hujan di Kabupaten Indramayu Regression for Exploring Rainfall Pattern in Indramayu Regency,” J. ILMU DASAR, vol. 12, pp. 50–56, 2009.

Cintiani, “Pemodelan Regresi Kuantil (Studi Kasus Pengeluaran Rumah Tangga untuk Konsumsi Rokok),” Institut Teknologi Sepuluh November, 2017.

Harinaldi, Prinsip-Prinsip Statistik Untuk Teknik dan Sains. Jakarta: Erlangga, 2005.

N. Astari, Amran, and A. K. Jaya, “Pengujian Hipotesis pada Regresi Kuantil,” Universitas Hasanuddin, 2017.

N. Sinurat, Sugianto, and W. Harjupa, “Analisa Arah Angin menggunakan Equatorial Atmosphere Radar (EAR) dan Optical Rain Gauge (ORG) di Atas Kototabang Sumatera Barat,” Universitas Riau, 2016.

R. S. Sari and I. N. Budiantara, “Pemodelan Pengangguran Terbuka di Jawa Timur dengan Menggunakan Pendekatan Regresi Spline Multivariabel,” J. Sains Dan Seni Its, vol. 1, no. 1, pp. 236–241, 2012.

Published
2023-04-15
How to Cite
[1]
W. Sanusi, S. Sukarna, and N. Harisahani, “QUANTILE REGRESSION MODEL ON RAINFALL IN MAKASSAR 2019”, BAREKENG: J. Math. & App., vol. 17, no. 1, pp. 0001-0008, Apr. 2023.