TIME SERIES MODELING OF NATURAL GAS FUTURE PRICE WITH FUZZY TIME SERIES CHEN, LEE AND TSAUR

  • Dodi Devianto Department of Mathematics, Faculty of Mathematics and Natural Sciences, Andalas University
  • Aulia Zuardin Department of Mathematics, Faculty of Mathematics and Natural Sciences, Andalas University
  • Maiyastri Maiyastri Department of Mathematics, Faculty of Mathematics and Natural Sciences, Andalas University
Keywords: FTS Chen, FTS Lee, FTS Tsaur, Model Accuracy, Natural Future Gas Price

Abstract

Investment is the process of investing money or capital for profit or material results. The investor carefully calculates the investment object to minimize losses and maximize profits. One of the essential investment objects is the futures price of natural gas considered a commodity that plays a vital role in the Indonesian economy. The movement of natural gas futures prices can be modeled using a time series model. The data in the time series model is believed to have particular pattern to model the data in the future. The natural gas futures price is modeled into a time series method by using fuzzy time series (FTS) approach of the FTS Chen, Lee and Tsaur. Model accuracy is calculated using the criteria of Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). The three FTS methods have good performance of accuracy for this time series data, where FTS Tsaur as fuzzy times series approach with average based method shows the best results with the smallest error rate to the data of natural gas future price.

Downloads

Download data is not yet available.

References

S. Baresa, S. Bogdan, and Z. Ivanovic, “Capital investments and financial profitability,” UTMS J. Econ., vol. 7, no. 1, pp. 49–59, 2016.

S. M. Boaisha and S. M. Amaitik, “Forecasting Model Based on Fuzzy Time Series Approach,” in Proceedings of the 10th International Arab Conference on Information Technology - ACIT 2010, 2010, no. January 2010.

Q. Song and B. S. Chissom, “Forecasting enrollments with fuzzy time series - Part II,” Fuzzy Sets Syst., vol. 62, no. 1, pp. 1–8, 1994, doi: 10.1016/0165-0114(93)90355-L.

M. L. Tauryawati and M. I. Irawan, “Perbandingan metode fuzzy time series cheng dan metode box-jenkins untuk memprediksi IHSG,” J. Sains dan Seni ITS, vol. 3, no. 2, pp. 34–39, 2014, [Online]. Available: www.idx.co.id.

S.-M. Chen, “Forecasting enrollments based on fuzzy time series,” Fuzzy Sets Syst., vol. 81, pp. 311–319, 1996.

D. P. Sugumonrong and A. Handinata, “Prediksi Harga Emas Menggunakan Metode Fuzzy Time Series Model Algoritma Chen,” J. Informatics, vol. 1, no. 1, pp. 48–54, 2019.

F. Rachim, T. Tarno, and S. Sugito, “PERBANDINGAN FUZZY TIME SERIES DENGAN METODE CHEN DAN METODE S. R. SINGH (Studi Kasus : Nilai Impor di Jawa Tengah Periode Januari 2014 – Desember 2019),” J. Gaussian, vol. 9, no. 3, pp. 306–315, 2020, doi: 10.14710/j.gauss.v9i3.28912.

C. H. Cheng, T. L. Chen, H. J. Teoh, and C. H. Chiang, “Fuzzy time-series based on adaptive expectation model for TAIEX forecasting,” Expert Syst. Appl., vol. 34, no. 2, pp. 1126–1132, 2008, doi: 10.1016/j.eswa.2006.12.021.

L. Fauziah, D. Devianto, and M. Maiyastri, “Peramalan Beban Listrik Jangka Menengah Di Wilayah Teluk Kuantan Dengan Metode Fuzzy Time Series Cheng,” J. Mat. UNAND, vol. 8, no. 2, p. 84, 2019, doi: 10.25077/jmu.8.2.84-92.2019.

F. Aditya, D. Devianto, and M. Maiyastri, “Peramalan Harga Emas Indonesia Menggunakan Metode Fuzzy Time Series Klasik,” J. Mat. UNAND, vol. 8, no. 2, p. 45, 2019, doi: 10.25077/jmu.8.2.45-52.2019.

M. Muhammad, S. Wahyuningsih, and M. Siringoringo, “Peramalan Nilai Tukar Petani Subsektor Peternakan Menggunakan Fuzzy Time Series Lee,” Jambura J. Math., vol. 3, no. 1, pp. 1–15, 2021, doi: 10.34312/jjom.v3i1.5940.

L. Handayani and D. Anggriani, “Perbandingan Model Chen Dan Model Lee Pada Metode Fuzzy Time Series Untuk Prediksi Harga Emas,” Pseudocode, vol. 2, no. 1, pp. 28–36, 2015, doi: 10.33369/pseudocode.2.1.28-36.

R. C. Tsaur, “A fuzzy time series-Markov chain model with an application to forecast the exchange rate between the Taiwan and us Dollar,” Int. J. Innov. Comput. Inf. Control, vol. 8, no. 7 B, pp. 4931–4942, 2012.

Yudi, “Peramalan Penjualan Mesin Industri Rumah Tangga Dengan Metode Fuzzy Time Series Ruey Chyn Tsaur,” J. Inform. Kaputama(JIK), vol. 2, no. 1, pp. 53–59, 2018.

S. S. Berutu, E. Soediyono, and P. S. Sasongo, “Peramalan Penjualan dengan Metode Fuzzy Time Series Ruey Chin Tsaur,” J. HimstaTech, vol. 11, no. 1, pp. 1–11, 2011.

Zaenurrohman, S. Hariyanto, and T. Udjiani, “Fuzzy time series Markov Chain and Fuzzy time series Chen & Hsu for forecasting,” J. Phys. Conf. Ser., vol. 1943, no. 1, pp. 7–13, 2021, doi: 10.1088/1742-6596/1943/1/012128.

K. Ramadani and D. Devianto, “The forecasting model of bitcoin price with fuzzy time series Markov chain and Chen logical method,” in AIP Conference Proceedings, 2020, vol. 2296, no. November, pp. 1–11, doi: 10.1063/5.0032178.

Y. Alyousifi, M. Othman, R. Sokkalingam, I. Faye, and P. C. L. Silva, “Predicting daily air pollution index based on fuzzy time series markov chain model,” Symmetry (Basel)., vol. 12, no. 2, pp. 1–18, 2020, doi: 10.3390/sym12020293.

R. Gao and O. Duru, “Parsimonious fuzzy time series modelling,” Expert Syst. Appl., vol. 156, p. 113447, 2020, doi: 10.1016/j.eswa.2020.113447.

F. M. Limited, “Natural Gas Futures,” 2022. https://www.investing.com/commodities/natural-gas (accessed Jan. 01, 2022).

Published
2022-12-15
How to Cite
[1]
D. Devianto, A. Zuardin, and M. Maiyastri, “TIME SERIES MODELING OF NATURAL GAS FUTURE PRICE WITH FUZZY TIME SERIES CHEN, LEE AND TSAUR”, BAREKENG: J. Math. & App., vol. 16, no. 4, pp. 1185-1196, Dec. 2022.