• Lukman Hakim Prodi Teknik Informatika, Fakultas Teknologi dan Desain, Institut Teknologi dan Bisnis Asia Malang
Keywords: Optimal Control, Covid-19, Quarantine Population, Health Mask Strategic, Pontryagin’s Principle, Numerical Simulations


This research develops an optimal control as an effort to push down the widely of Covid-19 with a mathematical model. Where, the problem of optimal control is conducted by adding three control variables, i.e an effort to avoid direct contact between the susceptible populations without masks and the infected populations without masks, and the thoughtfulness of a mask-wearing policy. The primary goal of optimal control is to minimize the infected populations without and with masks, and minimize the cost of weight control. Furthermore, if it applies Pontryagin's principle and discovers the Hamiltonian function, then optimal control conditions for the COVID-19 approximation are determined. Finally, as an addition to the model analysis results, numerical simulations are conducted to represent the solutions behavior of each subpopulation before and after the control was designed.


Download data is not yet available.


M. Z. Ndii, P. Hadisoemarto, D. Agustian, and A. K. Supriatna, “An Analysis of Covid-19 Transmission in Indonesia and Saudi Arabia,” Commun. Biomath. Sci., vol. 3, no. 1, pp. 19–27, 2020, doi: 10.5614/cbms.2020.3.1.3.

D. Handayani, D. R. Hadi, F. Isbaniah, E. Burhan, and H. Agustin, “Penyakit Virus Corona 2019,” J. Respirologi Indones., vol. 40, no. 2, pp. 119–129, 2020.

Q. Lin et al., “A Conceptual Model for the Coronavirus Disease 2019 (COVID-19) Outbreak in Wuhan, China with Individual Reaction and Governmental Action,” Int. J. Infect. Dis., vol. 93, pp. 211–216, 2020, doi: 10.1016/j.ijid.2020.02.058.

F. Isbaniah and A. D. Susanto, “Pneumonia Corona Virus Infection Disease-19 (COVID-19),” J. Indones. Med. Assoc., vol. 70, no. 4, pp. 87–94, 2020, doi: 10.47830/jinma-vol.70.4-2020-235.

C. C. Lai, S. Y. Chen, M. Y. Yen, P. I. Lee, W. C. Ko, and P. R. Hsueh, “The Impact of COVID-19 Preventative Measures on Airborne/Droplet-Transmitted Infectious Diseases in Taiwan,” J. Infect., vol. 82, no. 3, pp. e30–e31, 2021, doi: 10.1016/j.jinf.2020.11.029.

J. K. K. Asamoah, M. A. Owusu, Z. Jin, F. T. Oduro, A. Abidemi, and E. O. Gyasi, “Global Stability and Cost-effectiveness Analysis of COVID-19 Considering the Impact of The Environment: Using Data from Ghana,” Chaos, Solitons and Fractals, vol. 140, p. 110103, 2020, doi: 10.1016/j.chaos.2020.110103.

E. A. D. Kurniawan, F. Fatmawati, and A. Dianpermatasari, “Model Matematika SEAR dengan Memperhatikan Faktor Migrasi Terinfeksi untuk Kasus COVID-19 di Indonesia,” Limits J. Math. Its Appl., vol. 18, no. 2, p. 142, 2021, doi: 10.12962/limits.v18i2.7774.

M. Manaqib, I. Fauziah, and E. Hartati, “Model Matematika Penyebaran COVID-19 dengan Penggunaan Masker Kesehatan dan Karantina,” Jambura J. Biomath, vol. 2, no. 2, pp. 68–79, 2021.

M. Ali, S. T. H. Shah, M. Imran, and A. Khan, “The Role of Asymptomatic Class, Quarantine and Isolation in the Transmission of COVID-19,” J. Biol. Dyn., vol. 14, no. 1, pp. 389–408, 2020, doi: 10.1080/17513758.2020.1773000.

B. Batista, D. Dickenson, K. Gurski, M. Kebe, and N. Rankin, “Minimizing Disease Spread on a Quarantined Cruise Ship: A Model of COVID-19 with Asymptomatic Infections,” Math. Biosci., vol. 329, no. August, p. 108442, 2020, doi: 10.1016/j.mbs.2020.108442.

R. R. Musafir, A. Suryanto, and I. Darti, “Dynamics of COVID-19 Epidemic Model with Asymptomatic Infection, Quarantine, Protection and Vaccination,” Commun. Biomath. Sci., vol. 4, no. 2, pp. 106–124, 2021, doi: 10.5614/cbms.2021.4.2.3.

M. A. Khan, A. Atangana, E. Alzahrani, and Fatmawati, “The Dynamics of COVID-19 with Quarantined and Isolation,” Adv. Differ. Equations, vol. 2020, no. 1, 2020, doi: 10.1186/s13662-020-02882-9.

L. Hakim and A. R. Habibi, “Perbandingan Skema Numerik Metode Finite Difference dan Spectral,” J. Ilm. Teknol. Inf. Asia, vol. 10, no. 2, pp. 34–40, 2016.

L. Hakim and A. Kusumastuti, “Generalisasi Fungsi Airy Sebagai Solusi Analitik Persamaan Schrodinger Nonlinier,” Cauchy, vol. 2, no. 2, pp. 86–95, 2012, doi: 10.18860/ca.v2i2.2223.

J. Huang, S. Ruan, X. Wu, and X. Zhou, “Seasonal Transmission Dynamics of Measles in China,” Theory Biosci., vol. 137, no. 2, pp. 185–195, 2018, doi: 10.1007/s12064-018-0271-8.

O. M. Tessa, “Mathematical Model for Control of Measles by Vaccination,” Mali Symp. Appl. Sci., no. August 2006, pp. 31–36, 2006.

D. Suandi, “Optimal Control Problem of Vacination for The Spread of Measles Diseases Model,” J. Ris. dan Apl. Mat., vol. 2, no. 2, pp. 76–83, 2018, doi: 10.26740/jram.v2n2.p76-83.

W. . Kermack and A. . McKendrick, “A Contribution to the Mathematical Theory of Epidemics.,” Society, vol. 115, no. 772, pp. 700–721, 1927.

F. A. Kusumo, N. Susyanto, I. Endrayanto, and A. Meliala, “Model Berbasis SIR Dalam Prediksi Awal Penyebaran Covid-19 Di Daerah Istimewa Yogyakarta (DIY),” J. Mat. Thales, vol. 2, no. 1, pp. 1–10, 2020, doi: 10.22146/jmt.55820.

H. Husniah, Ruhanda, and A. K. Supriatna, “SIR Mathematical Model of Convalescent Plasma Transfusion Applied to the COVID-19 Pandemic Data in Indonesia to Control the Spread of the Disease,” J. Phys. Conf. Ser., vol. 2084, no. 1, 2021, doi: 10.1088/1742-6596/2084/1/012022.

W. D. Sihotang, C. C. Simbolon, J. Hartiny, D. Tindaon, and L. P. Sinaga, “Analisis Kestabilan Model SEIR Penyebaran Penyakit Campak dengan Pengaruh Imunisasi dan Vaksin MR,” J. Mat. Stat. dan Komputasi, vol. 16, no. 1, pp. 107–113, 2019, doi: 10.20956/jmsk.v16i1.6594.

A. Fatmawati, L. R. Aju, and R. Malango, “Model Dinamika Penyebaran Penyakit Campak Dengan Pengaruh Migrasi dan Penambahan Imunisasi,” Euler J. Ilm. Mat. Sains dan Teknol., vol. 8, no. 1, pp. 9–15, 2020.

H. Husniah, R. Ruhanda, A. K. Supriatna, and M. H. A. Biswas, “SEIR Mathematical Model of Convalescent Plasma Transfusion to Reduce COVID-19 Disease Transmission,” Mathematics, vol. 9, no. 22, 2021, doi: 10.3390/math9222857.

N. Nuraini, K. Khairudin, and M. Apri, “Modeling Simulation of COVID-19 in Indonesia based on Early Endemic Data,” Commun. Biomath. Sci., vol. 3, no. 1, pp. 1–8, 2020, doi: 10.5614/cbms.2020.3.1.1.

M. A. Acuña-Zegarra, S. Díaz-Infante, D. Baca-Carrasco, and D. Olmos-Liceaga, “COVID-19 Optimal Vaccination Policies: A Modeling Study on Efficacy, Natural and Vaccine-induced Immunity Responses,” Math. Biosci., vol. 337, no. November 2020, p. 108614, 2021, doi: 10.1016/j.mbs.2021.108614.

F. Fatmawati, F. F. Herdicho, W. Windarto, W. Chukwu, and H. Tasman, “An Optimal Control of Malaria Transmission Model with Mosquito Seasonal Factor,” Results Phys., vol. 25, p. 104238, 2021, doi: 10.1016/j.rinp.2021.104238.

Fatmawati and H. Tasman, “An Optimal Treatment Control of TB-HIV Coinfection,” Int. J. Math. Math. Sci., vol. 2016, 2016, doi: 10.1155/2016/8261208.

M. Marsudi, N. Hidayat, and R. B. E. Wibowo, “Application of Optimal Control Strategies for the Spread of HIV in a Population,” Res. J. Life Sci., vol. 4, no. 1, pp. 1–9, 2017, doi: 10.21776/ub.rjls.2017.004.01.1.

K. T. Kristanti, T. Trisilowati, and A. Widodo, “Optimal Control of Cervical Cancer Model with Vaccination and Screening,” J. Exp. Life Sci., vol. 10, no. 2, pp. 72–78, 2020, doi: 10.21776/ub.jels.2020.010.02.01.

L. Hakim, T. Trisilowati, and I. Darti, “Optimal Control of a Cholera Desease Model with Vaccination,” Int. J. Appl. Math. Stat., vol. 53, no. 4, pp. 65–72, 2015.

P. Yosyingyong and R. Viriyapong, “Global Stability and Optimal Control for a Hepatitis B Virus Infection Model with Immune Response and Drug Therapy,” J. Appl. Math. Comput., vol. 60, no. 1–2, pp. 537–565, 2019, doi: 10.1007/s12190-018-01226-x.

P. Yosyingyong and R. Viriyapong, “Stability Analysis and Optimal Control of a Hepatitis B Virus Transmission Model in the Presence of Vaccination and Treatment Strategy,” Naresuan Univ. Joournal Scinece Technol., vol. 30, no. 2, pp. 66–86, 2022.

L. Hakim, “Strategi Kontrol Optimal Model SIQR pada Penyebaran Penyakit Campak,” Leibniz J. Mat., vol. 2, no. 2, pp. 65–76, 2022.

R. Viriyapong and W. Ridbamroong, “Global Stability Analysis and Optimal Control of Measles Model with Vaccination and Treatment,” J. Appl. Math. Comput., vol. 62, no. 1–2, pp. 207–237, 2020, doi: 10.1007/s12190-019-01282-x.

H. S. Rodrigues, M. T. T. Monteiro, and D. F. M. Torres, “Optimal Control and Numerical Software: An Overview,” Syst. Theory Perspect. Appl. Dev., no. January, pp. 93–110, 2014.

How to Cite