THE PROPERTIES OF ROUGH V-COEXACT SEQUENCE IN ROUGH GROUP

  • Desfan Hafifullah Magister Mathematics Program, Mathematics Department of Universitas Lampung
  • Fitriani Fitriani Department of Mathematics, Universitas Lampung
  • Ahmad Faisol Department of Mathematics, Universitas Lampung
Keywords: exact sequence, V-coexact sequence, rough group

Abstract

In ring and module theory, the concept of an exact sequence is commonly employed. The exact sequence is generalized into the U-exact sequence and the V-coexact sequence. Rough set theory has also been applied to a variety of algebraic structures, including groups, rings, modules, and others. In this study, we investigated characteristics of a rough V-coexact sequence in rough groups

Downloads

Download data is not yet available.

References

W. A. Adkins and S. H. Weintraub, Algebra, An Approach via Module Theory. New York: Springer-Verlag, 1992.

B. Davvaz and Y. A. Parnian-Garamaleky, “A Note on Exact Sequences,” Bull. Malaysian Math. Soc., vol. 22, pp. 53–56, 1999.

S. M. Anvanriyeh and B. Davvaz, “U-Split Exact Sequences,” Far East J. Math. Sci., vol. 4, no. 2, pp. 209–219, 2002.

S. M. Anvanriyeh and B. Davvaz, “On Quasi-Exact Sequences,” Bull. Korean Math. Soc, vol. 42, no. 1, pp. 149–155, 2005, [Online]. Available: http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=E1BMAX_2005_v42n1_149

S. Sripatmi and Y. Septriana Anwar, “Perumuman Lemma Snake dan Lemma Lima,” J. Pijar MIPA, vol. X, no. 1, pp. 76–79, 2015.

Fitriani, B. Surodjo, and I. E. Wijayanti, “On Sub-Exact Sequences,” Far East J. Math. Sci., vol. 100, no. 7, pp. 1055–1065, 2016, doi: dx.doi.org/10.17654/MS100071055.

Fitriani, B. Surodjo, and I. E. Wijayanti, “On X-sub-linearly independent modules,” J. Phys. Conf. Ser., vol. 893, 2017, doi: https://doi.org/10.1088/1742-6596/893/1/012008.

Fitriani, I. E. Wijayanti, and B. Surodjo, “Generalization of U -Generator and M -Subgenerator Related to Category σ[M],” J. Math. Res., vol. 10, no. 4, pp. 101–106, 2018.

Fitriani, I. E. Wijayanti, and B. Surodjo, “A Generalization of Basis and Free Modules Relatives to a Family of R-Modules,” J. Phys. Conf. Ser., vol. 1097, no. 1, 2018, doi: 10.1088/1742-6596/1097/1/012087.

Z. Pawlak, “Rough Sets,” Rough Sets, pp. 1–51, 1991, doi: 10.1007/978-94-011-3534-4.

L. Jesmalar, “Homomorphism and Isomorphism of Rough Group,” Int. J. Adv. Res. Ideas Innov. Technol., vol. 3, no. 3, pp. 1382–1387, 2017.

A. A. Nugraha, F. Fitriani, M. Ansori, and A. Faisol, “The Implementation of Rough Set on a Group Structure,” vol. 8, no. 1, pp. 45–52, 2022.

D. Miao, S. Han, D. Li, and L. Sun, “Rough Group, Rough Subgroup and Their Properties,” in Lecture Notes in Computer Science, vol. 3641, Springer-Verlag Berlin Heidelberg, 2005, pp. 104–113. doi: https://doi.org/10.1007/11548669_11.

C. Wang and D. Chen, “A short note on some properties of rough groups,” Comput. Math. with Appl., vol. 59, no. 1, pp. 431–436, 2010, doi: 10.1016/j.camwa.2009.06.024.

A. K. Sinha and A. Prakash, “Rough Projective Module,” pp. 35–38, 2014.

P. Isaac and C. A. Neelima, “Rough ideals and their properties,” no. 1, pp. 1–8, 2013.

Q. Wang and J. Zhan, “Rough semigroups and rough fuzzy semigroups based on fuzzy ideals,” Open Math., vol. 14, no. 1, pp. 1114–1121, 2016, doi: 10.1515/math-2016-0102.

A. K. Sinha, “Rough Exact Sequences of Modules,” vol. 11, no. 4, pp. 2513–2517, 2016.

Published
2022-09-01
How to Cite
[1]
D. Hafifullah, F. Fitriani, and A. Faisol, “THE PROPERTIES OF ROUGH V-COEXACT SEQUENCE IN ROUGH GROUP”, BAREKENG: J. Math. & App., vol. 16, no. 3, pp. 1069-1078, Sep. 2022.