A NOTE ON THE SOLUTION OF THE CHARACTERISTIC EQUATION OVER THE SYMMETRIZED MAX-PLUS ALGEBRA

  • Gregoria Ariyanti Department of Mathematics Education, Faculty of Teacher Training and Education, Widya Mandala Surabaya Catholic University, Madiun City Campus
Keywords: symmetrized max-plus algebra, determinant, characteristic equation, elcp

Abstract

The symmetrized max-plus algebra is an extension of max-plus algebra. One of the problems in the symmetrized max-plus algebra is determining the eigenvalues of a matrix. If the determinant can be defined, the characteristic equation can be formulated as a max-plus algebraic multivariate polynomial equation system. A mathematical tool for solving the problem using operations as in conventional algebra, known as the extended linear complementary problem (ELCP), to determine the solution to the characteristic equation. In this paper, we will describe the use of ELCP in determining the solution to the characteristic equations of matrices over the symmetrized max-plus algebra.

Downloads

Download data is not yet available.

References

G. Ariyanti, A. Suparwanto, and B. Surodjo, “Necessary and sufficient conditions for the solution of the linear balanced systems in the symmetrized max plus algebra,” Far East J. Math. Sci., vol. 97, no. 2, pp. 253–266, 2015, doi: 10.17654/FJMSMay2015_253_266.

B. De Schutter, T. van den Boom, J. Xu, and S. S. Farahani, “Analysis and control of max-plus linear discrete-event systems: An introduction,” Discret. Event Dyn. Syst. Theory Appl., vol. 30, no. 1, pp. 25–54, 2020, doi: 10.1007/s10626-019-00294-w.

K. U. Leuven, F. D. E. R. T. Wetenschappen, and D. Elektrotechniek, Max-Algebraic System Theory for Max-Algebraic System Theory for. 1996.

K. G. Farlow, “Max-Plus Algebra,” 2009.

B. De Schutter and B. De Moor, “The Extended Linear Complementarity Problem and Its Applications in the Max-Plus Algebra,” Complement. Var. Probl. State Art, vol. 09, pp. 22–39, 1997.

K. Kondo, “Ultradiscrete sine-gordon equation over symmetrized max-plus algebra, and noncommutative discrete and ultradiscrete sine-Gordon equations,” Symmetry, Integr. Geom. Methods Appl., vol. 9, 2013, doi: 10.3842/SIGMA.2013.068.

W. Mora, A. Wasanawichit, and Y. Kemprasit, “Invertible Matrices over Idempotent Semirings,” vol. 1, no. 2, pp. 55–61, 2009.

C. Leake, F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, “Synchronization and Linearity: An Algebra for Discrete Event Systems.,” J. Oper. Res. Soc., vol. 45, no. 1, p. 118, 1994, doi: 10.2307/2583959.

D. Singh and D. Ph, “A Note on Symmetrized Max-Plus Algebra,” vol. 5, no. 1, pp. 1–10.

M. E. Brigden, R. W. Cottle, J.-S. Pang, and R. E. Stone, The Linear Complementarity Problem., vol. 156, no. 1. 1993. doi: 10.2307/2982870.

H. Mursyidah and S. Subiono, “Eigenvalue, eigenvector, eigenmode of reducible matrix and its application,” AIP Conf. Proc., vol. 1867, no. August 2017, 2017, doi: 10.1063/1.4994447.

B. De Schutter and B. De Moor, “A note on the characteristic equation in the max-plus algebra,” Linear Algebra Appl., vol. 261, no. 1–3, pp. 237–250, 1997, doi: 10.1016/s0024-3795(96)00407-7.

S. Gaubert, P. Butkovič, and R. Cuninghame-Green, “Minimal (max,+) realization of convex sequences,” SIAM J. Control Optim., vol. 36, no. 1, pp. 137–147, 1998, doi: 10.1137/S036301299528534X.

Z. R. Königsberg, “A generalized eigenmode algorithm for reducible regulå matrices over the max-plus algebra,” 2009 Chinese Control Decis. Conf. CCDC 2009, no. 24, pp. 5598–5603, 2009, doi: 10.1109/CCDC.2009.5195195.

S. Watanabe and Y. Watanabe, “Min-Plus Algebra and Networks (Novel Development of Nonlinear Discrete Integrable Systems),” RIMS Kôkyûroku Bessatsu, vol. 47, 2014.

Published
2022-12-15
How to Cite
[1]
G. Ariyanti, “A NOTE ON THE SOLUTION OF THE CHARACTERISTIC EQUATION OVER THE SYMMETRIZED MAX-PLUS ALGEBRA”, BAREKENG: J. Math. & App., vol. 16, no. 4, pp. 1347-1354, Dec. 2022.