ON SUPER (3n+5,2)- EDGE ANTIMAGIC TOTAL LABELING AND IT’S APPLICATION TO CONSTRUCT HILL CHIPER ALGORITHM

  • Rafiantika Megahnia Prihandini Department of Mathemathic Education, University of Jember, Indonesia
  • Robiatul Adawiyah Department of Mathemathic Education, University of Jember, Indonesia
Keywords: Graph Labelling, Hill Chipper, GShack(TB_2,v,n)

Abstract

Graph labeling can be implemented in solving problems for various fields of life.  One of the application of graph labelling is in security system. Information security is needed to reduce risk, data manipulation, and unauthorized destruction or destruction of information. Cryptographic algorithms that can be used to build security systems, one of the cryptographic algorithms is Hill Cipher. Hill chipper is a cryptographic algorithm that uses a matrix as a key to perform encryption, decryption, and modulo arithmetic. This study discusses the use of Super (3n+5,2)- edge antimagic total labeling to construct the Hill Chiper algorithm. The variation of the edge weight function and the corresponding edge label on the  graph, will make the constructed lock more complicated to hack

Downloads

Download data is not yet available.

References

J. A. Gallian, “A dynamic survey of graph labeling,” Electron. J. Comb., vol. 1, no. DynamicSurveys, 2018.

Dafik., Slamin., D. Tanna, A. Semanicova-Fenovcikova, and M. Baca, “Constructions of H-antimagic graphs using smaller edge-antimagic graphs,” Ars Comb., vol. 133, pp. 233–245, 2017.

M. Bača, Y. Lin, M. Miller, and M. Z. Youssef, “Edge-antimagic graphs,” Discrete Math., vol. 307, no. 11–12, pp. 1232–1244, 2007, doi: 10.1016/j.disc.2005.10.038.

M. Javaid, “On super edge-antimagic total labeling of subdivided stars,” Discuss. Math. - Graph Theory, vol. 34, no. 4, pp. 691–705, 2014, doi: 10.7151/dmgt.1764.

T. M. W. and C. C. Hsiao, “On anti-magic labeling for graph products,” Discret. Math, vol. 308, pp. 3624–3633, 2008.

R. M. Prihandini, I. H. Agustin, and Dafik, “The Construction of P2 ▹ H-antimagic graph using smaller edge-antimagic vertex labeling,” J. Phys. Conf. Ser., vol. 1008, no. 1, 2018, doi: 10.1088/1742-6596/1008/1/012039.

J. L. Shang, C. Lin, and S. C. Liaw, “On the antimagic labeling of star forests,” Util. Math, vol. 97, pp. 373–385, 2015.

N. Prasanna, … K. S.-O. J. of, and undefined 2014, “Applications of graph labeling in communication networks,” Computerscijournal.Org, vol. 7, no. 1, 2014, [Online]. Available: http://www.computerscijournal.org/pdf/vol7no1/OJCSV07I1P139-145.pdf

K. Madhusudhan Reddy, A. Itagi, S. Dabas, and B. K. Prakash, “Image encryption using orthogonal Hill Cipher algorithm,” Int. J. Eng. Technol., vol. 7, no. 4, pp. 59–63, 2018, doi: 10.14419/ijet.v7i4.10.20707.

A. Hidayat and T. Alawiyah, “Enkripsi dan Dekripsi Teks menggunakan Algoritma Hill Cipher dengan Kunci Matriks Persegi Panjang,” J. Mat. Integr., vol. 9, no. 1, p. 39, 2013, doi: 10.24198/jmi.v9i1.10196.

A. Putera, A. P. U. Siahaan, and R. Rahim, “Dynamic key matrix of hill cipher using genetic algorithm,” Int. J. Secur. its Appl., vol. 10, no. 8, pp. 173–180, 2016, doi: 10.14257/ijsia.2016.10.8.15.

S. Saeednia, “How to make the Hill cipher secure,” Cryptologia, vol. 24, no. 4, pp. 353–360, 2000.

R. T. Tarigan, “Pengamanan Pesan Rahasia Menggunakan Metode Algoritma Hill Cipehr,” Publ. Ilm. Teknol. …, vol. 3, no. November, pp. 161–165, 2018, [Online]. Available: http://jurnalnya.stmikneumann.ac.id/index.php/pitin/article/download/61/62

M. Mahmudah, “Super Edge Antimagic Total pada Generalisasi Shackle Graf Kipas dan Aplikasinya dalam Pengembangan Cryptosystem ( On super edge-antimagicness of generalized shackle”.

R. M. Prihandini, I. H. Agustin, and Dafik, “Chipertext stream construction by using super total labeling (a; D)-P2 B H-antimagic of comb product graph,” J. Phys. Conf. Ser., vol. 1211, no. 1, 2019, doi: 10.1088/1742-6596/1211/1/012013.

Published
2023-04-15
How to Cite
[1]
R. Prihandini and R. Adawiyah, “ON SUPER (3n+5,2)- EDGE ANTIMAGIC TOTAL LABELING AND IT’S APPLICATION TO CONSTRUCT HILL CHIPER ALGORITHM”, BAREKENG: J. Math. & App., vol. 17, no. 1, pp. 0029-0036, Apr. 2023.