ON THE THIRD ORDER SOLUTION OF KdV EQUATION BY USING HOMOTOPY PERTURBATION METHOD

  • Mashuri Mashuri Department of Mathematics, FMIPA, Universitas Jenderal Soedirman, Indonesia
  • Yayah Zakiyah Department of Mathematics, FMIPA, Universitas Jenderal Soedirman, Indonesia
  • Rina Reorita Department of Mathematics, FMIPA, Universitas Jenderal Soedirman, Indonesia
Keywords: KdV equation, Homotopy, perturbation method, Lindsteadt-Poincare method

Abstract

In this research we discussed about the solution of the KdV equation using Homotopy Perturbation method. The KdV equation that describing water wave equation solved  by using the mixing method between Homotopy and Perturbation method. Homotopy was built with embedding parameter p∈[0,1] which undergoes a deformation process  from linear problems to nonlinear problems and the assumed solution of the KdV equation is expressed in the form of a power series p up to the third order. The result show that in each order solution  we obtained resonance term. for handling the condition, we used Lindsteadt-Poincare method.the wave number k2 and dispersion relation  can be obtained in the second order solution as the effect of using Lindsteadt-Poincare method.

Downloads

Download data is not yet available.

References

A. H. Nayfeh, Perturbation Methods. Weinheim, 2004.

J.-H. He, “A Coupling Method of a Homotopy Technique and a Perturbation Technique for Non-Linear Problems,” Int. J. Non. Linear. Mech., vol. 35, pp. 37–43, Jan. 2000, doi: 10.1016/S0020-7462(98)00085-7.

J.-H. He, “Homotopy perturbation method: A new nonlinear analytical technique,” Appl. Math. Comput. - AMC, vol. 135, pp. 73–79, Feb. 2003, doi: 10.1016/S0096-3003(01)00312-5.

M. Bayat, I. Pakar, and G. Domairry, “Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review,” Lat. Am. J. Solids Struct., vol. 9, no. 2, pp. 145–234, 2012, doi: 10.1590/s1679-78252012000200003.

J. Biazar, M. Eslami, and H. Ghazvini, “Homotopy perturbation method for systems of partial differential equations,” Int. J. Nonlinear Sci. Numer. Simul., vol. 8, no. 3, pp. 413–418, 2007, doi: 10.1515/IJNSNS.2007.8.3.413.

A. A. Hemeda, “Homotopy perturbation method for solving partial differential equations of fractional order,” Int. J. Math. Anal., vol. 6, no. 49–52, pp. 2431–2448, 2012.

J.-H. He, “Application of homotopy perturbation method to nonlinear wave Equations,” Chaos, Solitons & Fractals, vol. 26, pp. 695–700, Nov. 2005, doi: 10.1016/j.chaos.2005.03.006.

L. Wiryanto and W. Djohan, “Metoda Beda Hingga pada Persamaan KdV Gelombang Interface,” Matematika, pp. 117–123, 2006, [Online]. Available: http://www.ejournal.undip.ac.id/index.php/matematika/article/view/1377

L. Debnath, Nonlinear water waves. Boston, [Mass.] ; Academic Press, 1994.

D. J. Korteweg and G. de Vries, “ XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves ,” London, Edinburgh, Dublin Philos. Mag. J. Sci., vol. 39, no. 240, pp. 422–443, 1895, doi: 10.1080/14786449508620739.

J. R. Munkres , Topology. Upper Saddle River, NJ: Prentice Hall, Inc., 2000.

J. He, “Modified Lindstedt-Poincare methods for some strongly non-linear oscillations Part I : expansion of a constant,” Int. J. Non. Linear. Mech., vol. 37, pp. 309–314, 2002.

J.-H. He, “Modified Lindsted-Poincare Methods For Some Strongly Nonlinear Oscillations Part III : Double Series Expansion,” Int. J. Nonlinear Sci. Numer. Simul., vol. 2, Jan. 2001, doi: 10.1515/IJNSNS.2001.2.4.317.

A. N. . Mashuri, Liam she, “on nonlinear bi-chromatic wave group distortions,” vol. 49, no. 2, pp. 85–106, 2011.

M. Mashuri, R. Reorita, and L. Kurniasih, “Penyelesaian Persamaan Kadomtsev Petviashvili Menggunakan Metode Asimtotik,” J. Mat. Integr., vol. 13, no. 1, p. 21, 2017, doi: 10.24198/jmi.v13i1.11396.

Published
2023-06-11
How to Cite
[1]
M. Mashuri, Y. Zakiyah, and R. Reorita, “ON THE THIRD ORDER SOLUTION OF KdV EQUATION BY USING HOMOTOPY PERTURBATION METHOD”, BAREKENG: J. Math. & App., vol. 17, no. 2, pp. 0609-0614, Jun. 2023.