APPLICATION OF RANDOM FOREST ALGORITHM ON WATCH PRICE PREDICTION SYSTEM USING FRAMEWORK FLASK

  • Dzakiyyatul Kirom Dalimunthe Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Indonesia
  • Raden Bagus Fajriya Hakim Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Indonesia
Keywords: Watch Prices, Random Forest, Prediction, Framework Flask

Abstract

In the modern era like today, watches not only function as timepieces, but have become a fashion trend for the community, especially teenagers. The increasing market demand for watches opens up opportunities for counterfeit watch sellers to sell their products by claiming that the watches they sell are genuine watches by offering relatively cheaper prices compared to genuine watches. This is very detrimental to consumers and also the watch industry. To minimize fraud committed by fake watch sellers, it is necessary to know the price of the original watch in advance, before buying the desired watch. Therefore, the purpose of this study is to predict the price of watches using the Random Forest method and will be developed into a web system using the Framework Flask. The results of the study using 3337 trees obtained an accuracy rate of 84,98% with a MAPE of 15,02%. The most influential variable on the price of watches is the material variable with the level of importance obtained at 0,359. After getting the best model, the model is then developed into a web system using the help of the Framework Flask and Heroku which can later be accessed online.

Downloads

Download data is not yet available.

References

A. W. Pradipta and B. T. Indrojarwo, "Desain Jam Tangan Kayu dengan Konsep Jujur Material dan Inklusif," Jurnal Sains dan Seni ITS, vol. 5, no. 2, pp. 243-248, 2016.

K. Saputra, "Pengaruh Gaya Hidup Citra Merek dan Negara Asal Terhadap Sikap Mahasiswa Universitas Andalas Dalam Keputusan Pembelian Produk Jam Tangan Casio," Padang, 2019.

L. Hakim, "Pandemi Covid-19, Penjualan Jam Tangan Garmin Naik Hingga 50 Persen," SindoNews, 19 December 2020. [Online]. Available: https://daerah.sindonews.com/read/273210/704/pandemi-covid-19-penjualan-jam-tangan-garmin-naik-hingga-50-persen-1608293531. [Accessed 05 January 2022].

S. Arimasen, "Meski Harga Murah, Ini 7 Alasan Hindari Jam Tangan KW," Jamtangan.com, 04 August 2020. [Online]. Available: https://blog.jamtangan.com/meski-harga-murah-ini-7-alasan-hindari-jam-tangan-kw/. [Accessed 26 December 2021].

Majalah Radatime, "Kerugian Membeli Jam Tangan KW/Palsu," 26 Juni 2021. [Online]. Available: https://majalah.radatime.co.id/kerugian-membeli-jam-tangan-kw-palsu/. [Accessed 26 December 2021].

T. Purwa, "Perbandingan Metode Regresi Logistik dan Random Forest Untuk Klasifikasi Data Imbalanced," Jurnal Matematika, Statistika dan Komputasi, vol. 16, no. 1, pp. 58-73, July 2019.

Y. A. Tampil and d. , "Analisis Regresi Logistik untuk Menenukan Faktor-Faktor yang Mempengaruhi Indeks Prestasi Kumulatif (IPK) Mahasiswa FMIPA Universitas Sam Ratulangi Manado," JdC, vol. 6, no. 2, pp. 56-62, 2017.

M. Nanja and P. , "Metode K-Nearest Neighbor Berbasis Forward Selection Untuk Prediksi Harga Komoditi Lada," Jurnal Pseudocode, vol. 2, no. 1, pp. 53-64, February 2015.

R. Amanda, H. Yasin and A. Prahutama, "Analisis Support Vector Regression (SVR) dalam Memprediksi Kurs Rupiah Terhadap Dollar Amerika Serikat," Jurnal Gaussian, vol. 3, no. 4, pp. 849-857, 2014.

B. Scholkopf and A. J. Smola, Learning With Kernels, London, England: The MIT Press, 2002.

S. A. Zega, "Penggunaan Pohon Keputusan Untuk Klasifikasi Tingkat Kualitas Mahasiswa Berdasarkan Jalur Masuk Kuliah," in Seminar Nasional Aplikasi Teknologi Informasi (SNATI), Yogyakarta, 2014.

R. Hartanto, "Penerapan Algoritma C 4.5 dengan Menggunakan Metode Decision Tree Untuk Memprediksi Target Produksi Casting Part PT. Eagle Industry Indonesia," Bekasi, 2018.

M. Dhawangkhara, "Prediksi Intensitas Hujan Kota Surabaya dengan Matlab Menggunakan Teknik Random Forest dan CART (Studi Kasus Kota Surabaya)," Surabaya, 2016.

N. Sintyaningrum, "Pemilihan Input dengan Random Forest Pada Model Time Series Regression dan Double Seasonal ARIMA Untuk Peramalan Data Pemakaian Beban Listrik Jangka Pendek," Surabaya, 2017.

B. Prasojo and E. Haryatmi, "Analisis Prediksi Kelayakan Pemberian Kredit Pinjaman dengan Metode Random Forest," Jurnal Nasional Teknologi dan Sistem Informasi, vol. 7, no. 2, pp. 79-89, 2 September 2021.

R. A. Haristu, "Penerapan Metode Random Forest Untuk Prediksi Win Ratio Pemain Player Unknown Battleground," Yogyakarta, 2019.

D. D. Ayani, H. S. Pratiwi and H. Muhardi, "Implementasi Web Scraping Untuk Pengambilan Data Pada Situs Marketplace," Jurnal Sistem dan Teknologi Informasi, vol. 7, no. 4, pp. 257-262, October 2019.

Published
2023-04-16
How to Cite
[1]
D. Dalimunthe and R. Hakim, “APPLICATION OF RANDOM FOREST ALGORITHM ON WATCH PRICE PREDICTION SYSTEM USING FRAMEWORK FLASK”, BAREKENG: J. Math. & App., vol. 17, no. 1, pp. 0171-0184, Apr. 2023.