SMALL AREA ESTIMATION OF MEAN YEARS SCHOOL IN KABUPATEN BOGOR USING SEMIPARAMETRIC P-SPLINE

  • Christiana Anggraeni Putri Statistics Study Program, STIS Polytechnic of Statistics
  • Indahwati Indahwati Statistics and Data Science Study Program, Faculty of Mathematics and Natural Sciences, IPB University
  • Anang Kurnia Statistics and Data Science Study Program, Faculty of Mathematics and Natural Sciences, IPB University
Keywords: mean years school, semiparametric penalized spline, small area estimation, spatial EBLUP

Abstract

The Fay-Herriot model, generally uses the EBLUP (Empirical Best Linear Unbiased Prediction) method, is less flexible due to the assumption of linearity. The P-Spline semiparametric model is a modification of the Fay-Herriot model which can accommodate the presence of two components, linear and nonlinear predictors. This paper also deals spatial dependence among the random area effects so that a model with spatially autocorrelated errors will be implemented, known as the SEBLUP  (Spatial Empirical Best Linear Unbiased Prediction) method. Using data from SUSENAS, PODES, and some publication from BPS, the main objective of this study is to estimate the mean years school at kecamatan level in Kabupaten Bogor using EBLUP, Semiparametric P-Spline approach and SEBLUP method. The results show that based on the RRMSE value, the cubic P-Spline model with three knots predicts the mean years school better than EBLUP. Meanwhile, the addition of spatial effects into the small area estimation has not been able to improve the estimated value of the P-Spline semiparametric approach.

Downloads

Download data is not yet available.

References

J. N. K. Rao and I. Molina, Small area estimation, 2nd ed. New York: Wiley and Sons, 2015.

J. D. Opsomer, G. Claeskens, M. G. Ranalli, G. Kauermann, and F. J. Breidt, “Non-parametric small area estimation using penalized spline regression,” 2008.

C. Giusti, S. Marchetti, M. Pratesi, and N. Salvati, “Semiparametric Fay-Herriot Model using Penalized Splines,” Journal of The Indian Society of Agricultural Statistics, vol. 66, no. 1, pp. 1–14, 2012, [Online]. Available: www.isas.org.in/jisas

N. Waters, “Tobler’s First Law of Geography,” in The International Encyclopedia of Geography, John Wiley & Sons, Ltd, 2017, pp. 1–13. doi: 10.1002/9781118786352.wbieg1011.

M. Pratesi and N. Salvati, “Small area estimation: The EBLUP estimator based on spatially correlated random area effects,” Stat Methods Appt, vol. 17, no. 1, pp. 113–141, Feb. 2008, doi: 10.1007/s10260-007-0061-9.

I. Sriliana, D. Agustina, and E. Sunandi, “Pemetaan Kemiskinan di Kabupaten Mukomuko Menggunakan Small Area Estimation Dengan Pendekatan Regresi Penalized Spline,” Jurnal Matematika Integratif, vol. 12, no. 2, pp. 125–133, Jul. 2016, doi: 10.24198/jmi.v12.n2.11929.59-67.

F. Apriani, “Pemodelan Pengeluaran Per Kapita Menggunakan Small Area Estimation Dengan Pendekatan Semiparametrik Penalized Spline,” ITS, Surabaya, 2017.

I. Sriliana, E. Sunandi, and U. Rafflesia, “The Poverty Modeling Using Small Area Estimation with Semiparametric P-spline (A case study: Poverty in Bengkulu Province),” Asian Journal of Applied Sciences , vol. 06, no. 04, pp. 166–174, 2018, [Online]. Available: www.ajouronline.com

M. Yoshimori and P. Lahiri, “A new adjusted maximum likelihood method for the Fay-Herriot small area model,” J Multivar Anal, vol. 124, pp. 281–294, Feb. 2014, doi: 10.1016/j.jmva.2013.10.012.

J. Luis´avila, L. Luis´avila-Valdez, M. Huerta, V. Leiva, M. Riquelme, and L. Trujillo, “The Fay-Herriot Model in Small Area Estimation: EM Algorithm And Application To Official Data,” REVSTAT-Statistical Journal, vol. 18, no. 5, pp. 613–635, 2020, [Online]. Available: www.victorleiva.cl

N. Ghaida Zia, Suparti, and D. Safitri, “Pemodelan Regresi Spline Menggunakan Metode Penalized Spline pada Data Longitudinal (Studi Kasus: Harga Penutupan Saham LQ45 Sektor Keuangan dengan Kurs USD terhadap Rupiah Periode Januari 2011-Januari 2016),” Jurnal Gaussian, vol. 6, no. 2, pp. 221–230, 2017, [Online]. Available: http://ejournal-s1.undip.ac.id/index.php/gaussian

A. Djuraidah and D. Aunuddin, “Pendugaan Regresi Spline Terpenalti dengan Pendekatan Model Linear Campuran,” 2006.

A. W. Ndung’u, S. Mwalili, and L. Odongo, “Hierarchical Penalized Mixed Model,” Open J Stat, vol. 09, no. 06, pp. 657–663, 2019, doi: 10.4236/ojs.2019.96042.

M. Maharani and D. R. S. Saputro, “Generalized Cross Validation (GCV) in Smoothing Spline Nonparametric Regression Models,” J Phys Conf Ser, vol. 1808, no. 1, Mar. 2021, doi: 10.1088/1742-6596/1808/1/012053.

J. Kubacki and A. Jedrzejczak, “Small area estimation of income under spatial sar model,” Statistics in Transition, vol. 17, no. 3, pp. 365–390, Sep. 2016, doi: 10.21307/stattrans-2016-028.

R. Oktavia, “Pendugaan Area Kecil Indikator Kemiskinan Tingkat Kecamatan di Kabupaten Bantul dengan Model Regresi Beta,” IPB, Bogor, 2019.

I. Molina and Y. Marhuenda, “R package sae: Methodology,” 2015. Accessed: Oct. 04, 2021. [Online]. Available: https://cran.r-project.org/web/packages/sae/vignettes/sae_methodology.pdf

Published
2022-12-15
How to Cite
[1]
C. Putri, I. Indahwati, and A. Kurnia, “SMALL AREA ESTIMATION OF MEAN YEARS SCHOOL IN KABUPATEN BOGOR USING SEMIPARAMETRIC P-SPLINE”, BAREKENG: J. Math. & App., vol. 16, no. 4, pp. 1541-1550, Dec. 2022.