INTRODUCTION OF PAPUAN AND PAPUA NEW GUINEAN FACE PAINTING USING A CONVOLUTIONAL NEURAL NETWORK

  • Happy Alyzhya Haay Master of Data Science Study Program, Department of Mathematics and Data Science, Faculty of Science and Mathematics, Satya Wacana Christian University, Indonesia
  • Suryasatriya Trihandaru Master of Data Science Study Program, Department of Mathematics and Data Science, Faculty of Science and Mathematics, Satya Wacana Christian University, Indonesia
  • Bambang Susanto Master of Data Science Study Program, Department of Mathematics and Data Science, Faculty of Science and Mathematics, Satya Wacana Christian University, Indonesia
Keywords: Convolutional Neural Network, ResNet-50, VGG-16, VGG-19

Abstract

In this research, the face painting recognition of Papua and Papua New Guinea was identified using the Convolutional Neural Network (CNN). This CNN method is one of the deep learning that is very well known and widely used in face recognition. The best training process model is obtained using the CNN architecture, namely ResNet-50, VGG-16, and VGG-19. The results obtained from the training model obtained an accuracy of 80.57% for the ResNet-50 model, 100% for the VGG-16 model, and 99.57% for the VGG-19 model. After the training process, predictions were continued using architectural models with test data. The prediction results obtained show that the accuracy of the ResNet-50 model is 0.70, the VGG-16 model is 0.82, and the VGG-19 model is 0.83. It means that the CNN architectural model that has the best performance in making predictions in identifying the recognition of Papua and Papua New Guinea's face painting is the VGG-19 model because the accuracy value obtained is 0.83.

Downloads

Download data is not yet available.

References

I. Peradantha and M. Murda, “KAJIAN BENTUK, SUMBER INSPIRASI DAN MAKNA SIMBOLIS MOTIF BODY PAINTING ETNIS PADAIDO DI PAPUA,” J. Arkeol. Papua, vol. Vol. 12 Ed, no. Juni, pp. 43–59, 2020.

Syamsiar, “EKSPLORASI TEKNIK FACE AND BODY PAINTING UNTUK MENAMBAH ARTISTIK PAGELARAN BATIK FASHION ART WEAR,” Brikolase, vol. 10, no. 1, 2018.

A. Savoiu and J. Wong, “Recognizing Facial Expressions Using Deep Learning,” p. 67, 2017, [Online]. Available: http://cs231n.stanford.edu/reports/2017/pdfs/224.pdf.

A. Rohim, Y. A. Sari, and Tibyani, “Convolution neural network (cnn) untuk pengklasifikasian citra makanan tradisional,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 7, pp. 7038–7042, 2019, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/5851/2789.

D. R. . Talwekar, R. K. Jaiswal, N. Sharma, and D. S. Jain, “Evolutional of Vgg16 and Resnet50 Using Transfer Learning With Classification Plant Disease,” Gedrag Organ. Rev., vol. 33, no. 04, pp. 327–334, 2020, doi: 10.37896/gor33.04/031.

D. Theckedath and R. R. Sedamkar, “Detecting Affect States Using VGG16, ResNet50 and SE-ResNet50 Networks,” SN Comput. Sci., vol. 1, no. 2, pp. 1–7, 2020, doi: 10.1007/s42979-020-0114-9.

M. Ibsen, C. Rathgeb, T. Fink, P. Drozdowski, and C. Busch, “Impact of facial tattoos and paintings on face recognition systems,” IET Biometrics, Apr. 2021, doi: 10.1049/bme2.12032.

N. K. C. PRATIWI, N. IBRAHIM, Y. N. FU’ADAH, and S. RIZAL, “Deteksi Parasit Plasmodium pada Citra Mikroskopis Hapusan Darah dengan Metode Deep Learning,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 9, no. 2, p. 306, 2021, doi: 10.26760/elkomika.v9i2.306.

O. Nurima Putri, “Implementasi Metode Cnn Dalam Klasifikasi Gambar Jamur Pada Analisis Image Processing (Studi Kasus: Gambar Jamur Dengan Genus Agaricus Dan Amanita),” 2020.

S. Tammina, “Transfer learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images,” Int. J. Sci. Res. Publ., vol. 9, no. 10, p. p9420, 2019, doi: 10.29322/ijsrp.9.10.2019.p9420.

A. Goodfellow, Ian; Bengio, Yosua; Courvile, Deep Learning, vol. 8, no. 9. 2017.

A. Victor Ikechukwu, S. Murali, R. Deepu, and R. C. Shivamurthy, “ResNet-50 vs VGG-19 vs training from scratch: A comparative analysis of the segmentation and classification of Pneumonia from chest X-ray images,” Glob. Transitions Proc., vol. 2, no. 2, pp. 375–381, 2021, doi: 10.1016/j.gltp.2021.08.027.

M. R. Alwanda, R. P. K. Ramadhan, and D. Alamsyah, “Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur LeNet-5 untuk Pengenalan Doodle,” J. Algoritm., vol. 1, no. 1, pp. 45–56, 2020, doi: 10.35957/algoritme.v1i1.434.

K. H. Mahmud, Adiwijaya, and S. Al Faraby, “Klasifikasi Citra Multi-Kelas Menggunakan Convolutional Neural Network,” e-Proceeding Eng., vol. 6, no. 1, pp. 2127–2136, 2019.

M. Hasnain, M. F. Pasha, I. Ghani, M. Imran, M. Y. Alzahrani, and R. Budiarto, “Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking,” IEEE Access, vol. 8, no. July, pp. 90847–90861, 2020, doi: 10.1109/ACCESS.2020.2994222.

W. Setiawan, “Perbandingan Arsitektur Convolutional Neural Network Untuk Klasifikasi Fundus,” J. Simantec, vol. 7, no. 2, pp. 48–53, 2020, doi: 10.21107/simantec.v7i2.6551.

S. Namani, L. S. Akkapeddi, and S. Bantu, “Performance Analysis of VGG-19 Deep Learning Model for COVID-19 Detection,” 2022 9th Int. Conf. Comput. Sustain. Glob. Dev., pp. 781–787, 2022, doi: 10.23919/INDIACom54597.2022.9763177.

Published
2023-04-16
How to Cite
[1]
H. Haay, S. Trihandaru, and B. Susanto, “INTRODUCTION OF PAPUAN AND PAPUA NEW GUINEAN FACE PAINTING USING A CONVOLUTIONAL NEURAL NETWORK”, BAREKENG: J. Math. & App., vol. 17, no. 1, pp. 0211-0224, Apr. 2023.