BIPARTITE GRAPH ASSOCIATED WITH ELEMENTS AND COSETS OF SUBRINGS OF FINITE RINGS

  • Hubbi Muhammad Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Indonesia
  • Niswah Qonita Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Indonesia
  • R A Wahyu Fibriyanti Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Indonesia
  • Yeni Susanti Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Indonesia
Keywords: Bipartite graph, Finite ring, Cosets, Quarternion, Matrices

Abstract

Let  be a finite ring. The bipartite graph associated to elements and cosets of subrings of  is a simple undirected graph  with vertex set , where  is the set of all subrings of , and two vertices  and  are adjacent if and only if  In this study, we investigate some basic properties of the graph . In particular, we investigate some properties of , where  is the ring of matrices over  Also, we study the diameter of the bipartite graph associated to the quaternion ring

Downloads

Download data is not yet available.

References

J. S. Williams, “Prime Graph Components of Finite Groups,” J. Algebr., vol. 69, pp. 487–513, 1981, doi: 10.1070/SM1990v067n01ABEH001363.

A. Abdollahi, S. Akbari, and H. R. Maimani, “Non-commuting Graph of A Group,” J. Algebr., vol. 298, no. 2, pp. 468–492, 2006, doi: 10.1016/j.jalgebra.2006.02.015.

A. Abdollahi, “Commuting Graphs of Full Matrix Rings over Finite Fields,” Linear Algebra Appl., vol. 428, no. 11–12, pp. 2947–2954, 2008, doi: 10.1016/j.laa.2008.01.036.

X. Ma, H. Wei, and L. Yang, “The Coprime Graph of A Group,” Int. J. Gr. Theory, vol. 3, no. 3, pp. 13–23, 2014.

A. Erfanian, K. Khashyarmanesh, and K. Nafar, “Non-commuting Graphs of Rings,” Discret. Math. Algorithms Appl., vol. 7, no. 3, pp. 1–7, 2015, doi: 10.1142/S1793830915500275.

S. Al-Kaseasbeh and A. Erfanian, “A Bipartite Graph Associated to Elements and Cosets of Subgroups of A Finite Group,” AIMS Math., vol. 6, no. 10, pp. 10395–10404, 2021, doi: 10.3934/math.2021603.

R. J. Wilson, Introduction to Graph Theory, 5th ed. New York: Springer, 2010.

D. S. Malik, J. M. Mordeson, and M. K. Sen, Fundamentals of Abstract Algebra. New York: McGraw-Hill, 1997.

W. C. Brown, Matrices over Commutative Rings. New York: Marcel Dekker, Inc., 1993. doi: 10.1142/9789811260131_0002.

L. Zhong-kui, “Semicommutative Subrings of Matrix Rings,” J. Math. Res. Expo., no. 2, pp. 246–268, 2006.

T. W. Hungerford, Algebra. New York: Springer, 1974. doi: 10.1112/blms/14.2.158.

W. A. Adkins and S. H. Weintraub, Algebra: An Approach via Module Theory, vol. 79, no. 484. 1995.

W. . Wallis, A Beginner’s Guide to Graph Theory, 2nd ed. Boston: Birkhäuser, 2007.

R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, 2nd ed. New York: Springer, 2012.

F. Zhang, “Quaternions and Matrices of Quaternions,” Linear Algebra Appl., vol. 251, pp. 21–57, 1997, doi: 10.1016/0024-3795(95)00543-9.

.

Published
2023-06-11
How to Cite
[1]
H. Muhammad, N. Qonita, R. Wahyu Fibriyanti, and Y. Susanti, “BIPARTITE GRAPH ASSOCIATED WITH ELEMENTS AND COSETS OF SUBRINGS OF FINITE RINGS”, BAREKENG: J. Math. & App., vol. 17, no. 2, pp. 0667-0672, Jun. 2023.