LOGISTIC MODELING TO PREDICT THE INTEREST OF THE INDONESIAN PEOPLE FOR BUYING FLOOD IMPACTED INSURANCE PRODUCTS

  • Yulial Hikmah Vocational Education Program, Universitas Indonesia, Indonesia
Keywords: Flood, Risk Mitigation, Logistic Regression Model, Insurance Product

Abstract

Indonesia is a country located on the equator and in the form of an archipelago. It has a high potential for various types of hydrometeorological-related disasters, such as floods, flash floods, droughts, extreme weather, etc. Almost all cities in Indonesia experience flooding every year, including DKI Jakarta, the capital city of Indonesia. Based on data from the National Disaster Management Agency (BNPB) in 2020, East Jakarta is a city that is prone to flooding. According to BNPB (2013), flooding is a disaster that relatively causes the most losses. Losses caused by floods, especially indirect losses, may rank first or second after an earthquake or tsunami. Floods cause so many losses, and it is necessary to have disaster mitigation efforts to minimize the possibility of flood risks. One risk mitigation due to natural disasters is buying insurance products. However, not everyone buys flood-impact insurance products due to economic and social factors. This study aims to create a model with the Logistics Regression Model to determine the factors influencing Indonesian people's interest in purchasing flood-impact insurance products. The research data is from 140 households in East Jakarta, Indonesia, using a non-probability purposive sampling technique. Furthermore, with a significance level of 10%, the logistic regression model obtained 14 significant regression coefficients. In the end, the obtained model is evaluated based on its level of accuracy. The results showed that the accuracy rate was almost excellent, namely 89.3%.

Downloads

Download data is not yet available.

References

BNPB RI, “Rencana Nasional Penanggulangan Bencana 2015-2019,” 2014. [Online]. Available: https://www.bnpb.go.id//uploads/renas/1/BUKU RENAS PB.pdf.

BNPB RI, “Buku Saku Tanggap Tangkas Tangguh Menghadapi Bencana,” 2017. [Online]. Available: https://siaga.bnpb.go.id/hkb/po-content/uploads/documents/Buku_Saku-10Jan18_FA.pdf.

S. Dahlia, N. H. Tricahyono, and W. F. Rosyidin, “Analisis Kerawanan Banjir Mengunakan Pendekatan Geomorfologi di DKI Jakarta,” J. Alami J. Teknol. Reduksi Risiko Bencana, vol. 2, no. 1, pp. 1–8, 2018.

E. Y. Gunawibawa and H. Oktiani, “Politik & Bencana Banjir Jakarta 2020: Analisis Peta Percapakan #JakartaBanjir,” Expo. J. Ilmu Komun., vol. 3, no. 1, pp. 60–75, 2020, doi: https://doi.org/10.33021/exp.v3i1.989.

A. Rosyidie, “Banjir: Fakta dan Dampaknya, serta Pengaruh dari Perubahan Guna Lahan,” J. Reg. City Plan., vol. 24, no. 3, pp. 241–249, 2013, doi: https://doi.org/10.5614/jpwk.2013.24.3.1.

P. Sidi, Pemanfaatan Ilmu Aktuaria dalam Mewujudkan Jaminan Risiko Banjir di dalam Konsep Smart City. Universitas Terbuka (UT), 2017.

A. Findayani, “Kesiap Siagaan Masyarakat dalam Penanggulangan Banjir di Kota Semarang,” J. Geogr. Media Inf. Pengemb. dan Profesi Kegeografian, vol. 2, no. 1, pp. 102–114, 2015, doi: https://doi.org/10.15294/jg.v12i1.8019.

Y. Hikmah, V. Yuristamanda, I. R. Hikmah, and K. A. Safitri, “Probit Modeling of Indonesian Economic and Social Factors to the Interest in Purchasing Flood-Impacted Insurance Products,” Int. J. Ind. Eng. Prod. Res., vol. 33, no. 2, pp. 1–12, 2022, doi: 10.22068/ijiepr.33.2.13.

Sugiyono, Memahami Penelitian Kualitatif. Bandung: Alfabeta, 2014.

BNPB RI, “Hujan Lebat Sebabkan 23 Kecamatan DKI Jakarta Terdampak Banjir,” 2020. https://bnpb.go.id/berita/hujan-lebat-sebabkan-23-kecamatan-dki-jakarta-terdampak-banjir (accessed Jun. 01, 2020).

K. Nisa, “Rekapitulasi Data Banjir DKI Jakarta dan Penanggulangannya Tahun 2020,” 2020. https://statistik.jakarta.go.id/rekapitulasi-data-banjir-dki-jakarta-dan-penanggulangannya-tahun-2020/ (accessed Jun. 01, 2020).

CNN Indonesia, “BNPB Sebut Banjir Rendam 23 Kecamatan di DKI, Jaktim Terparah,” Feb. 08, 2020. https://www.cnnindonesia.com/nasional/20200208215738-20-472935/bnpb-sebut-banjir-rendam-23-kecamatan-di-dki-jaktim-terparah (accessed Jun. 01, 2020).

I. Komara, “Warga di 10 Lokasi Jakarta Timur Dievakuasi dari Banjir,” detikNews, Jan. 01, 2020. https://news.detik.com/berita/d-4842307/warga-di-10-lokasi-jakarta-timur-dievakuasi-dari-banjir (accessed Jun. 01, 2020).

Kumparan News, “Titik Banjir Jakarta Bertambah, Berikut Daftar 46 RW yang Terendam,” 2020. https://kumparan.com/kumparannews/titik-banjir-jakarta-bertambah-berikut-daftar-46-rw-yang-terendam-1ssTJoGx9Qv/3 (accessed Jun. 01, 2020).

N. P. Putra, “Cek Titik Banjir di Ruas Jalan Jakarta Timur,” Liputan6, 2020. https://www.liputan6.com/news/read/4186976/cek-titik-banjir-di-ruas-jalan-jakarta-timur (accessed Jun. 01, 2020).

Syahraeni, “Analisis Tingkat Pemahaman Mahasiswa Jurusan Ilmu Perpustakaan Fakultas Adab dan Humaniora UIN Alauddin Makassar terhadap Sistem Klasifikas DDC,” UIN Alauddin Makassar, 2016.

Sugiyono, Metode Penelitian Kuantitatif Kualitatif dan R&D. Bandung: Alfabeta, 2018.

D. L. Olson and D. Wu, Predictive Data Mining Models, 2nd ed. Singapore: Springer, 2020.

H. Zhou, Learn Data Mining Through Excel: A Step-by-Step Approach for Understanding Machine Learning Methods. USA: Apress, 2020.

D. Hosmer Jr, S. Lemeshow, and R. Sturdivant, Applied Logistic Regression, 3rd ed. New York: John Wiley & Sons, 2013.

M. Hasnain, M. F. Pasha, I. Ghani, M. Imran, M. Y. Alzahrani, and R. Budiarto, “Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking,” IEEE Access, vol. 8, pp. 90847–90861, 2020, doi: 10.1109/ACCESS.2020.2994222.

M. Stojanoviü et al., “Understanding Sensitivity, Specificity, and Preductive Values,” Vojnosanit. Pregl., vol. 71, no. 11, pp. 1062–1065, 2014.

Published
2023-04-16
How to Cite
[1]
Y. Hikmah, “LOGISTIC MODELING TO PREDICT THE INTEREST OF THE INDONESIAN PEOPLE FOR BUYING FLOOD IMPACTED INSURANCE PRODUCTS”, BAREKENG: J. Math. & App., vol. 17, no. 1, pp. 0323-0330, Apr. 2023.