ANALYSIS OF THE MAGNETOHYDRODYNAMICS NANOVISCOUS FLUID BASED ON VOLUME FRACTION AND THERMOPHYSICAL PROPERTIES

  • Yolanda Norasia Mathematics Education, Faculty of Science and Technology, Walisongo State Islamic University, Indonesia
  • Mohamad Tafrikan Mathematics, Faculty of Science and Technology, Walisongo State Islamic University, Indonesia
  • Bhamakerti Hafiz Kamaluddin Mathematics, Faculty of Science and Technology, Walisongo State Islamic University, Indonesia
Keywords: Fluid flow, Nanoviscous, Volume fraction, Thermophysical, Magnetohydrodynamic

Abstract

Fluid flow control is applied in engineering and industry using computational fluid dynamics. Based on density, fluids are divided into two parts, namely non-viscous fluids and viscous fluids. Nanofluid is a fluid that has non-viscous and viscous characteristics. Nanoviscos fluid flow is interesting to study by considering the effect of volume fraction and thermophysical properties. Nanoviscous fluid flow models form dimensional equations that are then simplified into dimensionless equations. Dimensionless equations are converted into non-similar equations using flow functions and non-similar variables. Nanoviscous fluids with Cu particles and water-based fluids have higher temperatures and faster velocity. Based on the effect of volume fraction, the velocity of the nanoviscous fluid moves slower, while the temperature of the nanoviscous fluid increases.

Downloads

Download data is not yet available.

References

A. S. Jenifer, P. Saikrishnan, and R. W. Lewis, “Unsteady MHD Mixed Convection Flow of Water over a Sphere with Mass Transfer,” J. Appl. Comput. Mech., vol. 7, no. 2, pp. 935–943, 2021, doi: 10.22055/jacm.2021.35920.2761.

B. Widodo, Mathematical Modeling. ITSpress, 2012.

S. Choi, “Nanofluid technology: current status and future research.,” Energy, p. 26, 1998, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/11048%5Cnhttp://www.osti.gov/energycitations/product.biblio.jsp?osti_id=11048

A. Khan, M. Ashraf, A. M. Rashad, and H. A. Nabwey, “Impact of heat generation on magneto-nanofluid free convection flow about sphere in the plume region,” Mathematics, vol. 8, no. 11. pp. 1–18, 2020. doi: 10.3390/math8112010.

B. Widodo, C. Widodo, B., Anggriani, I., Imron, D. Aryany, N. Asiyah, F. A. Widjajati, and K. Kamiran, “The effect of magnetohydrodynamic nano fluid flow through porous cylinder,” AIP Conf. Proc., vol. 1867, no. August, 2017, doi: 10.1063/1.4994472.

O. Mahian et al., “Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory,” Phys. Rep., vol. 790, pp. 1–48, 2019, doi: 10.1016/j.physrep.2018.11.004.

Y. Norasia and Z. Zulaikha, “Pengaruh Partikel Nano Zn dan ZnO terhadap Aliran MHD Fluida Nano Pada Lapisan Batas Bola Bermagnet,” Sq. J. Math. Math. Educ., vol. 1, no. 2, p. 133, 2019, doi: 10.21580/square.2019.1.2.4792.

T. Gul et al., “Magneto hydrodynamic and dissipated nanofluid flow over an unsteady turning disk,” Adv. Mech. Eng., vol. 13, no. 7, pp. 1–11, 2021, doi: 10.1177/16878140211034392.

Y. Norasia, B. Widodo, and D. Adzkiya, “Pergerakan Aliran MHD Ag-AIR Melewati Bola Pejal,” Limits J. Math. Its Appl., vol. 18, no. 1, p. 15, 2021, doi: 10.12962/limits.v18i1.7888.

H. Wei et al., “Effect of volume fraction and size of Al2O3nanoparticles in thermal, frictional and economic performance of circumferential corrugated helical tube,” Case Stud. Therm. Eng., vol. 25, no. February, p. 100948, 2021, doi: 10.1016/j.csite.2021.100948.

M. Z. Abdullah, K. H. Yu, H. Y. Loh, R. Kamarudin, P. Gunnasegaran, and A. Alkhwaji, “Influence of Nanoparticles on Thermophysical Properties of Hybrid Nanofluids of Different Volume Fractions,” Nanomaterials, vol. 12, no. 15, p. 2570, 2022, doi: 10.3390/nano12152570.

Adnan, U. Khan, N. Ahmed, S. T. Mohyud-Din, M. D. Alsulami, and I. Khan, “A novel analysis of heat transfer in the nanofluid composed by nanodimaond and silver nanomaterials: numerical investigation,” Sci. Rep., vol. 12, no. 1, pp. 1–11, 2022, doi: 10.1038/s41598-021-04658-x.

Y. Norasia et al., “Laminar Viscous Fluid Flow with Micro-rotation Capabilities through Cylindrical Surface,” vol. 6, no. 4, pp. 865–875, 2022.

B. Widodo, D. K. Arif, D. Aryany, N. Asiyah, F. A. Widjajati, and K. Kamiran, “The effect of magnetohydrodynamic nano fluid flow through porous cylinder,” AIP Conf. Proc., vol. 1867, no. August 2017, 2017, doi: 10.1063/1.4994472.

S. Mojumder, S. Saha, S. Saha, and M. A. H. Mamun, “Combined effect of Reynolds and Grashof numbers on mixed convection in a lid-driven T-shaped cavity filled with water-Al2O3 nanofluid,” J. Hydrodyn., vol. 27, no. 5, pp. 782–794, 2015, doi: 10.1016/S1001-6058(15)60540-6.

C. Renon, M. Fénot, M. Girault, S. Guilain, and B. Assaad, “An experimental study of local heat transfer using high Prandtl number liquid jets,” Int. J. Heat Mass Transf., vol. 180, p. 121727, 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121727.

R. A. Arul Raja, J. Sunil, and R. Maheswaran, “Estimation of Thermo-Physical Properties of Nanofluids using Theoretical Correlations,” Int. J. Appl. Eng. Res., vol. 13, no. 10, pp. 7950–7953, 2018, [Online]. Available: http://www.ripublication.com

C. J. Etwire, I. Y. Seini, R. Musah, and O. D. Makinde, “Combined Effects of Variable Viscosity and Thermal Conductivity on Dissipative Flow of Oil-Based Nanofluid over a Permeable Vertical Surface,” Diffus. Found., vol. 16, no. June, pp. 158–176, 2018, doi: 10.4028/www.scientific.net/df.16.158.

M. N. Bello et al., “Reaction Dynamics of Rocket Propellant with Magnesium Oxide Nanoparticles,” Energy and Fuels, vol. 29, no. 9, pp. 6111–6117, 2015, doi: 10.1021/acs.energyfuels.5b00905.

K. A. Mohammed, A. R. A. Talib, N. A. Aziz, and K. A. Ahmed, “Three dimensional numerical investigations on the heat transfer enhancement in a triangular facing step channels using nanofluid,” IOP Conf. Ser. Mater. Sci. Eng., vol. 152, no. 1, 2016, doi: 10.1088/1757-899X/152/1/012057.

Published
2023-04-16
How to Cite
[1]
Y. Norasia, M. Tafrikan, and B. Kamaluddin, “ANALYSIS OF THE MAGNETOHYDRODYNAMICS NANOVISCOUS FLUID BASED ON VOLUME FRACTION AND THERMOPHYSICAL PROPERTIES”, BAREKENG: J. Math. & App., vol. 17, no. 1, pp. 0331-0340, Apr. 2023.