ROBUST STOCHASTIC PRODUCTION FRONTIER TO ESTIMATE TECHNICAL EFFICIENCY OF RICE FARMING IN SULAWESI SELATAN
Abstract
The stochastic production frontier (SPF) is the stochastic frontier analysis (SFA) method used to estimate the production frontier by accounting for the existence of inefficiency. The standard SPF assumes that the noise component follows a Normal distribution and the inefficiency component follows a half-Normal distribution. The presence of outliers in the data will affect the inaccuracy in estimating the parameters and leads to an exaggerated spread of efficiency predictions. This study uses two alternative models, the first with SPF Normal-Gamma and the second with SPF Student's t-half Normal, then the results are compared with standard SPF. This study uses data from statistics Indonesia on the cost structure of paddy cultivation household survey in 2014. This study aims to examine the effect of changes in distribution assumptions on the standard SPF model in estimating parameter value and the technical efficiency score in the presence of outliers. The parameter coefficient estimates similar results that apply to three SPF models. Only the standard error value in the alternative SPF model tends to be smaller than the standard SPF model. The Normal-Gamma model performs better in assessing residual with smaller root mean square error (RMSE) than the others, but the results of the estimated technical efficiency still contain outliers. The Student's t-half Normal model estimates technical efficiency no longer contains outliers, the range is shorter than the other models, and the results of estimating technical efficiency are not monotonous in the distribution of residual tails. The SPF Student's t-half Normal model is more robust in presence outliers than SPF Normal-half Normal and SPF Normal-Gamma.
Downloads
References
T. J. Coelli, D. S. P. Rao, C. J. O’Donnell, and G. E. Battese, An Introduction to Efficiency and Productivity Analysis. Springer US, 2005. [Online]. Available: https://books.google.co.id/books?id=V2Rpu8M6RhwC
C. J. O’Donnell, Productivity and Efficiency Analysis. Singapore: Springer, 2018.
R. Zulkarnain, “Inefisiensi Perikanan Budi Daya Indonesia dengan Pendekatan Model Stochastic Frontier Spasial [Tesis],” Institut Pertanian Bogor, Bogor, 2021.
C. S. Kumbhakar, J. H. Wang, and P. A. Horncastle, A Practitioner’s Guide to: Stochastic Frontier Analysis Using Stata. New York: Cambridge University Press, 2015.
M. S. Campos, M. A. Costa, T. S. Gontijo, and A. L. Lopes-Ahn, “Robust Stochastic Frontier Analysis Applied to The Brazilian Electricity Distribution Benchmarking Method,” Decis. Anal. J., vol. 3, no. April, p. 100051, 2022, doi: 10.1016/j.dajour.2022.100051.
P. Wheat, A. D. Stead, and W. H. Greene, “Robust Stochastic Frontier Analysis: a Student’s t-half Normal Model with Application to Highway Maintenance Costs in England,” J. Product. Anal., vol. 51, no. 1, pp. 21–38, 2019, doi: 10.1007/s11123-018-0541-y.
W. H. Greene, “A Gamma-Distributed Stochastic Frontier Model,” J. Econom., vol. 46, pp. 141–163, 1990.
[BPS] Badan Pusat Statistik, Ringkasan Eksekutif Pengeluaran dan Konsumsi Penduduk Indonesia berdasarkan Survei Sosial Ekonomi Nasiomal (Susenas) September 2021. Jakarta: BPS, 2021.
Statistics Indonesia, “Luas Panen, Produksi, dan Produktivitas Padi menurut Provinsi 2018-2020,” 2021. https://www.bps.go.id/indicator/53/1498/2/luas-panen-produksi-dan-produktivitas-padi-menurut-provinsi.html (accessed Aug. 06, 2021).
A. A. Muhammad, “Efisiensi Teknis Usaha Tani Padi di Provinsi Sulawesi Selatan [tesis],” Bogor: Institut Pertanian Bogor, 2018.
D. Aigner, C. A. Lovell, and P. Schmidt, “Formulation and Estimation of Stochastic Frontier Production Function Models,” J. Econom., vol. 6, pp. 21–37, 1977.
W. Meeusen and J. Van Den Broeck, “Efficiency Estimation from Cobb-Douglas Production Function with Composed Error,” Int. Econ. Rev. (Philadelphia)., vol. 18, 1977.
S. Sangeethamani and L. Mary Louis, “Maximization of Technical Efficiency of a Normal- Half Normal Stochastic Production Frontier Model,” vol. 13, no. 10, pp. 7353–7364, 2017.
J. Jondrow, C. A. Knox Lovell, I. S. Materov, and P. Schmidt, “On The Estimation of Technical Inefficiency in The Stochastic Frontier Production Function Model,” J. Econom., vol. 19, no. 2–3, pp. 233–238, 1982, doi: 10.1016/0304-4076(82)90004-5.
R. Zulkarnain, A. Djuraidah, I. M. Sumertajaya, and I. Indahwati, “Utilization of Student’S T Distribution To Handle Outliers in Technical Efficiency Measurement,” Media Stat., vol. 14, no. 1, pp. 56–67, 2021, doi: 10.14710/medstat.14.1.56-67.
A. R. Syahputra, “Analissi Efisiensi Teknis Usahatani Padi di Kalimantan Tengah: Pendekatan Stochastic Frontier [Tesis],” Bogor, Institut Pertanian Bogor, 2022.
K. H. D. and Y. D. and L. Latruffe, “{sfaR}: Stochastic Frontier Analysis using R.” 2022. [Online]. Available: https://cran.r-project.org/package=sfaR/
Copyright (c) 2023 Ismail Pranata, Anik Djuraidah, Muhammad Nur Aidi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.