OVERDISPERSION HANDLING IN POISSON REGRESSION MODEL BY APPLYING NEGATIVE BINOMIAL REGRESSION

  • Yesan Tiara Department of Statistics, IPB University, Indonesia
  • Muhammad Nur Aidi Department of Statistics, IPB University, Indonesia
  • Erfiani Erfiani Department of Statistics, IPB University, Indonesia
  • Rika Rachmawati Department of Statistics, IPB University, Indonesia
Keywords: Poisson regression, overdispersion, negative binomial regression, anemia, Women of Childbearing Age (WCA)

Abstract

Statistical analysis that can be used if the response variable is quantified data is Poisson regression, assuming that the assumption must be met equidispersion, where the average response variable is the same as the standard deviation value. A negative binomial regression can overcome an unfulfilled equidispersion assumption where the mean is greater than the standard deviation value (overdispersion). This method is more flexible because it does not require that the variance be equal to the mean. The case studies used in this research are cases of anemia in women of childbearing age (WCA) in 33 provinces of Indonesia. This study aims to apply the Poisson regression method and negative binomial in the case data of anemia in WCA to prove the model's goodness and find the factors that influence anemia in WCA. This data was obtained from biomedical sample data for Riset Kesehatan Dasar (Riskesdas) and data obtained from the website of the Badan Pusat Statistik (BPS) in 2013. By applying these two methods, the result is that negative binomial regression is the best model in modeling WCA cases with anemia in Indonesia because it has the smallest AIC value of 221.72; however, the difference is not too far from the AIC in the Poisson regression model, which is 221.83. It can also be supported that Poisson regression is unsuitable for the analysis because of the case of overdispersion. With a significance level of 10%, the number of WCA affected by malaria per 100 population influences cases of WCA anemia. At the same time, other independent variables have no effect.

Downloads

Download data is not yet available.

References

A. J. Dobson and A. Barnett, An Introduction to Generalized Linear Models. Boca Raton: Chapman & Hall/CRC Press, 2018.

D. Rahmayanti and S. W. Rizki, “Penanganan Overdispersi dengan Model Binomial Negatif pada Data Klaim Asuransi Kendaraan Bermotor Roda Empat,” Bul. Ilm. Mat. Stat. dan Ter., vol. 7, no. 2, pp. 55–62, 2018.

M. Majore, D. T. Salaki, and J. D. Prang, “Penerapan Regresi Binomial Negatif dalam Mengatasi Overdispersi Regresi Poisson pada Kasus Jumlah Kematian Ibu,” D’CARTESIAN, vol. 9, no. 2, pp. 133–139, 2021.

D. Yuli and D. Indriani, “Pemodelan Binomial Negatif Untuk Mengatasi Overdispersi Data Diskrit pada Kasus TB di Provinsi Jawa Timur,” Biometrika dan Kependud., vol. 4, no. 2, pp. 134–142, 2015.

N. H. Fitrial and A. Fatikhurrizqi, “Modelling The Number Of COVID-19 Cases In Indonesia Using Poisson Regression And Binomial Regression Approach,” Semin. Nas. Off. Stat. 2020, no. 1, pp. 65–72, 2020.

Luhung Mustika Budiharti and S. Sunendiari, “Pemodelan dan Pemetaan Jumlah Penderita Kusta di Jawa Barat dengan Regresi Binomial Negatif dan Flexibly Shaped Spatial Scan Statistic,” J. Ris. Stat., vol. 1, no. 2, pp. 99–106, 2021, doi: 10.29313/jrs.v1i2.409.

M. IB, Ilmu Kebinanan, Penyakit Kandungan, dan Keluarga Berencana. Jakarta: EGC, 2012.

M. Ridwan and S. Sunendiari, “Mendeteksi dan Mengatasi Multikolinieritas pada Data Penelitian Diabetes Melitus Wanita Suku Indian Tahun 2018,” Statistika, vol. 7, no. 1, pp. 64–70, 2021.

Rahmadeni and D. Anggreni, “Analisis Jumlah Tenaga Kerja Teehadap Jumlah Pasien RSUD Arifin Achmad Pekanbaru Menggunakan Metode Regresi Gulud,” Sains, Teknol. dan Ind., vol. 12, no. 1, pp. 48–57, 2014.

R. G. Walpole, R. H. Myers, and K. Ye, Probability and Statistics. United States of America: Pearson Education, 2012.

S. A. Pardo and M. A. Pardo, Statistical Methods for Field and Laboratory Studies in Behavioral Ecology. New York: Chapman & Hall/CRC Press, 2018.

A. A. Johnson, M. Q. Ott, and M. Dogucu, An Introduction to Applied Bayesian Modelling. New York: Chapman & Hall/CRC Press, 2022.

WHO, The World Health Report. Reducing Risks, Promoting Healthy Life. Geneva: World Health Organization, 2022.

Y. Balarajan, U. Ramakrishnan, E. Ozaltin, A. H. Shankar, and Subramanian, “Anemia in Low-Income and Middle-Income Countries,” Lancet, vol. 278, no. 9809, pp. 2123–2135, 2012.

WHO, WHA Global Nutrition Targets 2025: Anemia Policy Brief. Geneva: World Health Organization, 2014.

G. Masukume, A. Khashan, L. Kenny, P. Baker, and G. Nelson, “Risk Factors and Birth Outcomes of Anemia in Early Pregnancy in A Nulliparous Cohort,” PLoS One, vol. 10, no. 4, pp. 1–15, 2015.

A. W. Sumantri, “Hubungan Pengetahuan dan Pendidikan Ibu Hamil dengan Anemia di RT 10 RW 8 Wilayah Kerja Puskesmas Kemalaraja Baturaja,” Kesehat. Saelmakers Perdana, vol. 4, no. 1, pp. 51–56, 2018.

M. I. Akbar et al., “Pelaksanaan Program Keping Emas pada Ibu Hamil Kekurangan Energi Kalori dan Anemia di Desa Kronjo Tahun 2019,” Bid. Ilmu Kesehat., vol. 10, no. 1, pp. 108–121, 2020.

H. Sari, Y. Yarmaliza, and Z. Zakiyuddin, “Faktor-Faktor yang Mempengaruhi Kejadian Anemia pada Ibu Hamil di Wilayah Kerja Puskesmas Samadua Kecamatan Samadua Kabupaten Aceh Selatan,” Mhs. Kesehat. Masy., vol. 2, no. 1, pp. 178–202, 2018.

E. Agustin, E. Resnhaleksmana, and I. W. Getas, “Hubungan Kepadatan Parasit Terhadap Kadar Hemoglobin pada Penderita Malaria Asimtomatik di Gunung Sari,” Anal. Med. Biosains, vol. 9, no. 1, pp. 60–65, 2022.

A. M. Maulani, “Faktor-Faktor yang Berhubungan dengan Kejadian Anemia pada Remaja Putri di SMPN 1 Kalibawang Kabupaten Kulon Progo Tahun 2020,” Poltekkes Kemenkes Yogyakarta, 2020.

I. Oktaviani, D. Rahmawati, and Y. N. R. Kana, “Prevalensi dan Faktor Risiko Anemia pada Anak di Negara Maju,” D’CARTESIAN, vol. 16, no. 4, pp. 218–226, 2021.

R. K. Dasar, Riset Kesehatan Dasar (Riskesdas). Indonesia: Riset Kesehatan Dasar, 2013.

E. Purwaningsih, W. Widyawati, and A. Akhmadi, “Perilaku Hidup Bersih dan Sehat pada Ibu Hamil dengan Anemia di Yogyakarta,” Kesehat. Samodra Ilmu, vol. 9, no. 1, pp. 29–43, 2018.

A. Y. Herindrawati, I. N. Latra, and Purhadi, “Pemodelan Regresi Poisson Inverse Gaussian Studi Kasus Jumlah Kasus Baru HIV di Provinsi Jawa Tengah Tahun 2015,” Sains dan Seni ITS, vol. 6, no. 1, pp. 143–148, 2017.

Published
2023-04-17
How to Cite
[1]
Y. Tiara, M. Aidi, E. Erfiani, and R. Rachmawati, “OVERDISPERSION HANDLING IN POISSON REGRESSION MODEL BY APPLYING NEGATIVE BINOMIAL REGRESSION”, BAREKENG: J. Math. & App., vol. 17, no. 1, pp. 0417-0426, Apr. 2023.