THE IMPLEMENTATION OF A ROUGH SET OF PROJECTIVE MODULE

  • Gusti Ayu Dwiyanti Department of Mathematics, Universitas Lampung, Indonesia
  • Fitriani Fitriani Department of Mathematics, Universitas Lampung, Indonesia
  • Ahmad Faisol Department of Mathematics, Universitas Lampung, Indonesia
Keywords: Approximation space, Projective module, Rough projective module

Abstract

In ring and module theory, one concept is the projective module. A module is said to be projective if it is a direct sum of independent modules. (U, R)  is an approximation space with non-empty set  and equivalence relation   If X subset U, we can form upper approximation and lower approximation. X is rough set if  upper Apr(X) is not equal to under Apr(X). The rough set theory applies to algebraic structures, including groups, rings, modules, and module homomorphisms. In this study, we will investigate the properties of the rough projective module.

Downloads

Download data is not yet available.

References

Z. Pawlak, “Rough sets,” Int. J. Comput. Inf. Sci., vol. 11, no. 5, pp. 341–356, 1982, doi: 10.1007/BF01001956.

R. Biswas and S. Nanda, “Rough groups and rough subgroups,” Bull. Polish Acad. Sci. Math., vol. 42, Jan. 1994.

D. Miao, S. Han, D. Li, and L. Sun, “Rough Group , Rough Subgroup,” no. 1, pp. 104–105, 2005.

B. Davvaz and M. Mahdavipour, “Roughness in modules,” Inf. Sci., vol. 176, pp. 3658–3674, Dec. 2006, doi: 10.1016/j.ins.2006.02.014.

R. Chinram, “Rough prime ideals and rough fuzzy prime ideals in gamma-semigroups,” Commun. Korean Math. Soc., vol. 24, no. 3, pp. 341–351, 2009, doi: 10.4134/CKMS.2009.24.3.341.

A. K. Sinha and A. Prakash, “Rough Projective Module,” pp. 35–38, 2014.

N. Setyaningsih, F. Fitriani, and A. Faisol, “Sub-exact sequence of rough groups,” Al-Jabar J. Pendidik. Mat., vol. 12, no. 2, pp. 267–272, 2021, doi: 10.24042/ajpm.v12i2.8917.

L. Jesmalar, “Homomorphism and Isomorphism of Rough Group,” Int. J. Adv. Res. Ideas Innov. Technol., vol. 3, no. 3, pp. 1382–1387, 2017.

A. A. Nugraha, F. Fitriani, M. Ansori, and A. Faisol, “Implementation of Rough Set on A Group Structure,” J. Mat. MANTIK, vol. 8, no. 1, pp. 45–52, 2022, doi: 10.15642/mantik.2022.8.1.45-52.

D. Hafifullah, F. Fitriani, and A. Faisol, “The Properties of Rough V-Coexact Sequence in Rough Group,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 3, pp. 1069–1078, 2022, doi: 10.30598/barekengvol16iss3pp1069-1078.

W. a. Adkins and S. H. Weintraub, Algebra: An Approach via Module Theory, vol. 79, no. 484. 1995.

O. F. Algebra, “Self-Projective,” vol. 21, pp. 13–21, 1992.

G. Puninski and P. Rothmaler, “Pure-projective modules,” J. London Math. Soc., vol. 71, no. 2, pp. 304–320, 2005, doi: 10.1112/S0024610705006290.

P. Modul, F. Dalam, R. R. Suatu, and M. M. P, “KAITAN ANTARA SUPLEMEN SUATU MODUL DAN EKSISTENSI AMPLOP PROYEKTIF MODUL FAKTORNYA DALAM KATEGORI σ [,” no. 1, pp. 105–109.

I. Maulana, “Schanuel ’ s Lemma in P -Poor Modules,” vol. 5, no. 2, pp. 76–82, 2019.

Published
2023-06-11
How to Cite
[1]
G. Dwiyanti, F. Fitriani, and A. Faisol, “THE IMPLEMENTATION OF A ROUGH SET OF PROJECTIVE MODULE”, BAREKENG: J. Math. & App., vol. 17, no. 2, pp. 0735-0744, Jun. 2023.